IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v45y2016i5p1061-1074.html
   My bibliography  Save this article

The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology

Author

Listed:
  • Keijl, S.
  • Gilsing, V.A.
  • Knoben, J.
  • Duysters, G.

Abstract

‘Recombination’ and ‘impact’ have become well established constructs to understand the origins of inventions and their importance for the development of future inventions. Despite forming these two familiar ‘faces of inventions’, their specific relationship has only marginally been subject to inquiry. To address this, this paper studies the relationship between the level of recombination of inventions and their technological impact, along two steps. First, in contrast to the common idea of a linear relationship between recombination and impact we argue that the relationship is in fact a non-linear one. Second, we distinguish between different levels of recombination (low, intermediate, high) and determine their differential impact, thereby establishing which type of recombination leads to the highest level of technological impact. We test our hypotheses on an extensive dataset, comprised of all USPTO granted patents in the biopharmaceutical industry between 1976 and 2006. Our empirical findings indicate strong evidence for a curvilinear relationship between recombination and impact. In addition, we find that an intermediate level of recombination – formed by a combination of components from local, adjacent and distant knowledge domains – carries the highest level of technological impact of all types of inventions. Finally, we discuss implications for the academic literature and for firms’ innovation strategies.

Suggested Citation

  • Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
  • Handle: RePEc:eee:respol:v:45:y:2016:i:5:p:1061-1074
    DOI: 10.1016/j.respol.2016.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004873331630021X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2016.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hegde, Deepak & Sampat, Bhaven, 2009. "Examiner citations, applicant citations, and the private value of patents," Economics Letters, Elsevier, vol. 105(3), pages 287-289, December.
    2. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    5. repec:fth:harver:1473 is not listed on IDEAS
    6. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    7. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    8. Robert D. Dewar & Jane E. Dutton, 1986. "The Adoption of Radical and Incremental Innovations: An Empirical Analysis," Management Science, INFORMS, vol. 32(11), pages 1422-1433, November.
    9. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    10. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    11. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    12. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    13. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    14. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    15. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    16. Nooteboom, Bart & Van Haverbeke, Wim & Duysters, Geert & Gilsing, Victor & van den Oord, Ad, 2007. "Optimal cognitive distance and absorptive capacity," Research Policy, Elsevier, vol. 36(7), pages 1016-1034, September.
    17. Scott Shane, 2000. "Prior Knowledge and the Discovery of Entrepreneurial Opportunities," Organization Science, INFORMS, vol. 11(4), pages 448-469, August.
    18. J. Scott Long & Jeremy Freese, 2006. "Regression Models for Categorical Dependent Variables using Stata, 2nd Edition," Stata Press books, StataCorp LP, edition 2, number long2, March.
    19. Glenn Hoetker, 2007. "The use of logit and probit models in strategic management research: Critical issues," Strategic Management Journal, Wiley Blackwell, vol. 28(4), pages 331-343, April.
    20. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    21. Deborah Dougherty & Danielle D. Dunne, 2011. "Organizing Ecologies of Complex Innovation," Organization Science, INFORMS, vol. 22(5), pages 1214-1223, October.
    22. Benner, Mary & Waldfogel, Joel, 2008. "Close to you? Bias and precision in patent-based measures of technological proximity," Research Policy, Elsevier, vol. 37(9), pages 1556-1567, October.
    23. Klepper, Steven & Simons, Kenneth L., 2005. "Industry shakeouts and technological change," International Journal of Industrial Organization, Elsevier, vol. 23(1-2), pages 23-43, February.
    24. Orietta Marsili, 2001. "The Anatomy and Evolution of Industries," Books, Edward Elgar Publishing, number 2272.
    25. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    26. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    27. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    28. Gambardella,Alfonso, 1995. "Science and Innovation," Cambridge Books, Cambridge University Press, number 9780521451185.
    29. Pino G. Audia & Jack A. Goncalo, 2007. "Past Success and Creativity over Time: A Study of Inventors in the Hard Disk Drive Industry," Management Science, INFORMS, vol. 53(1), pages 1-15, January.
    30. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    31. Abernathy, William J. & Clark, Kim B., 1985. "Innovation: Mapping the winds of creative destruction," Research Policy, Elsevier, vol. 14(1), pages 3-22, February.
    32. Reitzig, Markus, 2003. "What determines patent value?: Insights from the semiconductor industry," Research Policy, Elsevier, vol. 32(1), pages 13-26, January.
    33. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    2. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    3. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    4. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    5. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    6. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    7. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    8. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    9. Petra Moser & Joerg Ohmstedt & Paul M. Rhode, 2016. "Patent Citations - An Analysis of Quality Differences and Citing Practices in Hybrid Corn," Working Papers 16-05, New York University, Leonard N. Stern School of Business, Department of Economics.
    10. Kathryn Rudie Harrigan & Maria Chiara Guardo & Elona Marku, 2018. "Patent value and the Tobin’s q ratio in media services," The Journal of Technology Transfer, Springer, vol. 43(1), pages 1-19, February.
    11. Petra Moser & Joerg Ohmstedt & Paul W. Rhode, 2018. "Patent Citations—An Analysis of Quality Differences and Citing Practices in Hybrid Corn," Management Science, INFORMS, vol. 64(4), pages 1926-1940, April.
    12. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    13. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    14. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    15. Anindya Ghosh & Xavier Martin & Johannes M. Pennings & Filippo Carlo Wezel, 2014. "Ambition Is Nothing Without Focus: Compensating for Negative Transfer of Experience in R&D," Organization Science, INFORMS, vol. 25(2), pages 572-590, April.
    16. Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
    17. Gino Cattani, 2005. "Preadaptation, Firm Heterogeneity, and Technological Performance: A Study on the Evolution of Fiber Optics, 1970–1995," Organization Science, INFORMS, vol. 16(6), pages 563-580, December.
    18. Satoshi Yasukawa & Shingo Kano, 2014. "Validating the usefulness of examiners’ forward citations from the viewpoint of applicants’ self-selection during the patent application procedure," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 895-909, June.
    19. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    20. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:45:y:2016:i:5:p:1061-1074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.