Advanced Search
MyIDEAS: Login to save this article or follow this journal

Inter-technology knowledge spillovers for energy technologies

Contents:

Author Info

  • Nemet, Gregory F.

Abstract

Both anecdotal evidence and the innovation literature indicate that important advances in energy technology have made use of knowledge originating in other technological areas. This study uses the set of U.S. patents granted from 1976 to 2006 to assess the role of knowledge acquired from outside each energy patent's technological classification. It identifies the effect of external knowledge on the forward citation frequency of energy patents. The results support the claim above. Regression coefficients on citations to external prior art are positive and significant. Further, the effect of external citations is significantly larger than that of other types of citations. Conversely, citations to prior art that is technologically near have a negative effect on forward citation frequency. These results are robust across several alternative specifications and definitions of whether each flow of knowledge is external. Important energy patents have drawn heavily from external prior art categorized as chemical, electronics, and electrical; they cite very little prior art from computers, communications, and medical inventions.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0140988312001077
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Energy Economics.

Volume (Year): 34 (2012)
Issue (Month): 5 ()
Pages: 1259-1270

as in new window
Handle: RePEc:eee:eneeco:v:34:y:2012:i:5:p:1259-1270

Contact details of provider:
Web page: http://www.elsevier.com/locate/eneco

Related research

Keywords: Innovation; Patents; Spillovers; Knowledge flows;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Sorenson, Olav & Rivkin, Jan W. & Fleming, Lee, 2006. "Complexity, networks and knowledge flow," Research Policy, Elsevier, vol. 35(7), pages 994-1017, September.
  2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, April.
  3. Valentina Bosetti & Carlo Carraro & Emanuele Massetti & Massimo Tavoni, 2007. "International Energy R&D Spillovers and the Economics of Greenhouse Gas Atmospheric Stabilization," Working Papers 2007.82, Fondazione Eni Enrico Mattei.
  4. James Bessen, 2006. "The Value of U.S. Patents by Owner and Patent Characteristics," Working Papers 0603, Research on Innovation.
  5. repec:fth:harver:1473 is not listed on IDEAS
  6. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
  7. Bronwyn H. Hall & Christian Helmers, 2010. "The role of patent protection in (clean/green) technology transfer," NBER Working Papers 16323, National Bureau of Economic Research, Inc.
  8. Nicolas van Zeebroeck, 2011. "The Puzzle of Patent Value Indicators," ULB Institutional Repository 2013/60729, ULB -- Universite Libre de Bruxelles.
  9. Mary Lovely & David Popp, 2008. "Trade, Technology, and the Environment: Why Have Poor Countries Regulated Sooner?," NBER Working Papers 14286, National Bureau of Economic Research, Inc.
  10. Jinyoung Kim & Gerald Marschke, 2004. "Accounting for the recent surge in U.S. patenting: changes in R&D expenditures, patent yields, and the high tech sector," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 13(6), pages 543-558.
  11. Yixin Dai & David Popp & Stuart Bretschneider, 2005. "Institutions and intellectual property: The influence of institutional forces on university patenting," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 24(3), pages 579-598.
  12. David Popp & Richard G. Newell & Adam B. Jaffe, 2009. "Energy, the Environment, and Technological Change," NBER Working Papers 14832, National Bureau of Economic Research, Inc.
  13. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343 National Bureau of Economic Research, Inc.
  14. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
  15. Benner, Mary & Waldfogel, Joel, 2008. "Close to you? Bias and precision in patent-based measures of technological proximity," Research Policy, Elsevier, vol. 37(9), pages 1556-1567, October.
  16. Bessen, James, 2005. "Patents and the diffusion of technical information," Economics Letters, Elsevier, vol. 86(1), pages 121-128, January.
  17. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
  18. Gilsing, V.A. & Nooteboom, B. & Haverbeke, W.P.M. van & Duijsters, G.M. & Oord, A., 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Open Access publications from Tilburg University urn:nbn:nl:ui:12-3159316, Tilburg University.
  19. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
  20. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
  21. Adam B. Jaffe, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits and Market Value," NBER Working Papers 1815, National Bureau of Economic Research, Inc.
  22. Nemet, Gregory F., 2010. "Robust incentives and the design of a climate change governance regime," Energy Policy, Elsevier, vol. 38(11), pages 7216-7225, November.
  23. de la Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2011. "Innovation and international technology transfer: The case of the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 39(2), pages 761-770, February.
  24. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, 04.
  25. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
  26. Bye, Brita & Jacobsen, Karl, 2011. "Restricted carbon emissions and directed R&D support; an applied general equilibrium analysis," Energy Economics, Elsevier, vol. 33(3), pages 543-555, May.
  27. K. Pavitt & M. Robson & J. Townsend, 1989. "Technological Accumulation, Diversification and Organisation in UK Companies, 1945--1983," Management Science, INFORMS, vol. 35(1), pages 81-99, January.
  28. Matthieu Glachant & Antoine Dechezleprêtre & Ivan Hascic & Nick Johnstone & Yann Ménière, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Working Papers 2009.82, Fondazione Eni Enrico Mattei.
  29. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
  30. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
  31. Braun, Frauke G & Schmidt-Ehmcke, Jens & Zloczysti, Petra, 2010. "Innovative Activity in Wind and Solar Technology: Empirical Evidence on Knowledge Spillovers Using Patent Data," CEPR Discussion Papers 7865, C.E.P.R. Discussion Papers.
  32. Barberá-Tomás, David & Jiménez-Sáez, Fernando & Castelló-Molina, Itziar, 2011. "Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks," Research Policy, Elsevier, vol. 40(3), pages 473-486, April.
  33. Scherer, F. M., 1982. "Inter-industry technology flows in the United States," Research Policy, Elsevier, vol. 11(4), pages 227-245, August.
  34. Mariani, Myriam, 2004. "What determines technological hits?: Geography versus firm competencies," Research Policy, Elsevier, vol. 33(10), pages 1565-1582, December.
  35. Roberto Fontana & Alessandro Nuvolari & Bart Verspagen, 2008. "Mapping Technological Trajectories as Patent Citation Networks. An application to Data Communication Standards," SPRU Working Paper Series 166, SPRU - Science and Technology Policy Research, University of Sussex.
  36. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
  37. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
  38. Scherer, F M, 1982. "Inter-Industry Technology Flows and Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 627-34, November.
  39. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
  40. Nordhaus, William, 2011. "Designing a friendly space for technological change to slow global warming," Energy Economics, Elsevier, vol. 33(4), pages 665-673, July.
  41. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages S4-S17.
  42. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
  43. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
  44. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
  45. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
  46. Motohashi, Kazuyuki & Yuan, Yuan, 2010. "Productivity impact of technology spillover from multinationals to local firms: Comparing China's automobile and electronics industries," Research Policy, Elsevier, vol. 39(6), pages 790-798, July.
  47. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
  48. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & Nick Johnstone & Yann Ménière, 2011. "Invention and transfer of climate change-mitigation technologies: A global analysis," Post-Print hal-00488214, HAL.
  49. J.A.F. Machado & J. M. C. Santos Silva, 2003. "Quantiles for Counts," Econometrics 0303001, EconWPA.
  50. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
  51. Maurseth, Per Botolf & Verspagen, Bart, 2002. " Knowledge Spillovers in Europe: A Patent Citations Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 531-45, December.
  52. Richard R. Nelson, 2003. "On the Uneven Evolution of Human Know-How," LEM Papers Series 2003/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  53. Adam B. Jaffe & Michael S. Fogarty & Bruce A. Banks, 1997. "Evidence from Patents and Patent Citations on the Impact of NASA and Other Federal Labs on Commercial Innovation," NBER Working Papers 6044, National Bureau of Economic Research, Inc.
  54. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
  55. David Popp, 2006. "They Don'T Invent Them Like They Used To: An Examination Of Energy Patent Citations Over Time," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(8), pages 753-776.
  56. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
  57. Nelson, Richard R. & Wolff, Edward N., 1997. "Factors behind cross-industry differences in technical progress," Structural Change and Economic Dynamics, Elsevier, vol. 8(2), pages 205-220, June.
  58. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
  59. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
  60. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67, pages 297.
  61. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
  62. Rosenberg, Nathan, 2009. "Some critical episodes in the progress of medical innovation: An Anglo-American perspective," Research Policy, Elsevier, vol. 38(2), pages 234-242, March.
  63. Garcia-Vega, Maria, 2006. "Does technological diversification promote innovation?: An empirical analysis for European firms," Research Policy, Elsevier, vol. 35(2), pages 230-246, March.
  64. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
  2. Patrick Criqui & Silvana Mima & Philippe Menanteau & Alban Kitous, 2014. "Mitigation strategies and energy technology learning: an assessment with the POLES model," Post-Print halshs-00999280, HAL.
  3. Corradini, Massimiliano & Costantini, Valeria & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Unveiling the dynamic relation between R&D and emission abatement," Ecological Economics, Elsevier, vol. 102(C), pages 48-59.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:5:p:1259-1270. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.