IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v107y2012icp13-20.html
   My bibliography  Save this article

Nitrogen use and the effects of nitrogen taxation under consideration of production and price risks

Author

Listed:
  • Finger, Robert

Abstract

Production and price risks affect optimal nitrogen use as well as the effects of nitrogen taxation if farmers’ risk aversion is taken into account. We apply a bio-economic model to investigate the influence of risk aversion on nitrogen use in Swiss maize production. Income risks for farmers are expected to increase in the future, for instance, due to higher price variability caused by market liberalization or by higher yield variability caused by climate change. We investigate the influence of changes in these sources of risks on optimal levels of nitrogen use and its influence on the effects of nitrogen taxation. Our empirical analysis for Swiss maize production shows that risk-aversion leads to lower levels of nitrogen application than for risk-neutral farmers. Furthermore, nitrogen taxes lead to higher reductions of nitrogen use if farmers are risk-averse and these farmers face lower abatement costs. Thus, analyses on the effect of nitrogen taxes that are solely based on profit maximizing behavior may underestimate nitrogen reductions and overestimate abatement costs. Taking expected shocks in price and yield variability into account, we find that these differences between risk neutral and risk-averse decision makers will increase further. External influences on production and price risks can thus influence the effects of agricultural policies on farmers’ decision making. Thus, considering farmers’ risk-preferences as well as potential increases in farmers’ income risks can improve agricultural policy making.

Suggested Citation

  • Finger, Robert, 2012. "Nitrogen use and the effects of nitrogen taxation under consideration of production and price risks," Agricultural Systems, Elsevier, vol. 107(C), pages 13-20.
  • Handle: RePEc:eee:agisys:v:107:y:2012:i:c:p:13-20
    DOI: 10.1016/j.agsy.2011.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1100179X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2011.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Finger & Stéphanie Schmid, 2008. "Modeling agricultural production risk and the adaptation to climate change," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 68(1), pages 25-41, May.
    2. Phoebe Koundouri & Marita Laukkanen & Sami Myyrä & Céline Nauges, 2009. "The effects of EU agricultural policy changes on farmers' risk attitudes," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(1), pages 53-77, March.
    3. Glenn Sheriff, 2005. "Efficient Waste? Why Farmers Over-Apply Nutrients and the Implications for Policy Design," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(4), pages 542-557.
    4. Babcock, Bruce A. & Blackmer, Alfred M., 1992. "The Value Of Reducing Temporal Input Nonuniformities," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 17(2), pages 1-13, December.
    5. Olivier Mahul, 2003. "Hedging price risk in the presence of crop yield and revenue insurance," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(2), pages 217-239, June.
    6. Rosenzweig, Mark R & Binswanger, Hans P, 1993. "Wealth, Weather Risk and the Composition and Profitability of Agricultural Investments," Economic Journal, Royal Economic Society, vol. 103(416), pages 56-78, January.
    7. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    8. Finger, Robert & Hediger, Werner, 2007. "The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn," MPRA Paper 4740, University Library of Munich, Germany.
    9. Sarris, Alexander H., 2000. "Has world cereal market instability increased?," Food Policy, Elsevier, vol. 25(3), pages 337-350, June.
    10. Robert Finger, 2010. "Revisiting the Evaluation of Robust Regression Techniques for Crop Yield Data Detrending," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 205-211.
    11. Moschini, Giancarlo & Hennessy, David A., 2001. "Uncertainty, risk aversion, and risk management for agricultural producers," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 2, pages 88-153, Elsevier.
    12. Bruce A. Babcock, 1992. "The Effects of Uncertainty on Optimal Nitrogen Applications," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(2), pages 271-280.
    13. Swinton, Scott M. & Clark, David S., 1994. "Farm-Level Evaluation of Alternative Policy Approaches to Reduce Nitrate Leaching from Midwest Agriculture," Agricultural and Resource Economics Review, Cambridge University Press, vol. 23(1), pages 66-74, April.
    14. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    15. C. W. Rougoor & H. Van Zeijts & M. F. Hofreither & S. Backman, 2001. "Experiences with Fertilizer Taxes in Europe," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 44(6), pages 877-887.
    16. Choi, E. Kwan & Feinerman, Eli, 1995. "Regulation Of Nitrogen Pollution: Taxes Versus Quotas," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 20(1), pages 1-22, July.
    17. Rosegrant, Mark W. & Roumasset, James A., 1985. "The Effect Of Fertiliser On Risk: A Heteroscedastic Production Function With Measurable Stochastic Inputs," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 29(2), pages 1-15, August.
    18. Lambert, David K., 1990. "Risk Considerations In The Reduction Of Nitrogen Fertilizer Use In Agricultural Production," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-11, December.
    19. Bharat Ramaswami, 1992. "Production Risk and Optimal Input Decisions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 860-869.
    20. H. Von Blottnitz & A. Rabl & D. Boiadjiev & T. Taylor & S. Arnold, 2006. "Damage costs of nitrogen fertilizer in Europe and their internalization," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 49(3), pages 413-433.
    21. Chowdhury, Manzoor E. & Lacewell, Ronald D., 1996. "Implications Of Alternative Policies On Nitrate Contamination Of Groundwater," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 21(1), pages 1-14, July.
    22. Murat Isik, 2002. "Resource Management under Production and Output Price Uncertainty: Implications for Environmental Policy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 557-571.
    23. Alfons Weersink & Charry Dutka & Michael Goss, 1998. "Crop Price and Risk Effects on Farm Abatement Costs," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 46(2), pages 171-190, July.
    24. Olivier Mahul, 2003. "Hedging price risk in the presence of crop yeld and revenue insurance," Post-Print hal-02680491, HAL.
    25. Hartmann, M. & Hediger, W. & Peter, S., 2008. "Reducing nitrogen losses from agricultural systems – an integrated economic assessment," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 43, March.
    26. Jules Pretty & Craig Brett & David Gee & Rachel Hine & Chris Mason & James Morison & Matthew Rayment & Gert Van Der Bijl & Thomas Dobbs, 2001. "Policy Challenges and Priorities for Internalizing the Externalities of Modern Agriculture," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 44(2), pages 263-283.
    27. Salvatore Di Falco & Jean‐Paul Chavas & Melinda Smale, 2007. "Farmer management of production risk on degraded lands: the role of wheat variety diversity in the Tigray region, Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 36(2), pages 147-156, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mandrini, German & Pittelkow, Cameron M. & Archontoulis, Sotirios V. & Mieno, Taro & Martin, Nicolas F., 2021. "Understanding differences between static and dynamic nitrogen fertilizer tools using simulation modeling," Agricultural Systems, Elsevier, vol. 194(C).
    2. Benjamin Dequiedt & Emmanuel Servonnat, 2016. "Risk as a limit or an opportunity to mitigate GHG emissions? The case of fertilisation in agriculture," Working Papers 1606, Chaire Economie du climat.
    3. Liu, Donghua & Shi, Zujiao & Ma, Qian & Zhang, Yan & Cai, Tie & Zhang, Peng & Jia, Zhikuan, 2023. "Strategy for matching fertilizer application with soil water before sowing can stabilize maize productivity under rainwater harvesting and mulching planting in dry areas: A six-year field experiment," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Komarek, Adam M. & De Pinto, Alessandro & Smith, Vincent H., 2020. "A review of types of risks in agriculture: What we know and what we need to know," Agricultural Systems, Elsevier, vol. 178(C).
    5. Schmidt, Alena & Necpalova, Magdalena & Mack, Gabriele & Möhring, Anke & Six, Johan, 2021. "A food tax only minimally reduces the N surplus of Swiss agriculture," Agricultural Systems, Elsevier, vol. 194(C).
    6. El Benni, Nadja & Finger, Robert, 2014. "Where is the risk? Price, yield and cost risk in Swiss crop production," Revue d'Etudes en Agriculture et Environnement, Editions NecPlus, vol. 95(03), pages 299-326, September.
    7. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    8. Finger, Robert, 2012. "How strong is the “natural hedge”? The effects of crop acreage and aggregation levels," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122538, European Association of Agricultural Economists.
    9. Niklas Möhring & Martina Bozzola & Stefan Hirsch & Robert Finger, 2020. "Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 429-444, May.
    10. Späti, Karin & Huber, Robert & Finger, Robert, 2021. "Benefits of Increasing Information Accuracy in Variable Rate Technologies," Ecological Economics, Elsevier, vol. 185(C).
    11. Mack, Gabriele & Huber, Robert, 2017. "On-farm compliance costs and N surplus reduction of mixed dairy farms under grassland-based feeding systems," Agricultural Systems, Elsevier, vol. 154(C), pages 34-44.
    12. Edith Kouakou & Marielle Brunette & Richard Koenig & Philippe Delacote, 2023. "Crop Yield Risks and Nitrogen Fertilisation in French Agriculture: Implications for Crop Insurance," Working Papers of BETA 2023-38, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    13. Argento, F. & Liebisch, F. & Anken, T. & Walter, A. & El Benni, N., 2022. "Investigating two solutions to balance revenues and N surplus in Swiss winter wheat," Agricultural Systems, Elsevier, vol. 201(C).
    14. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    15. Meyer-Aurich, Andreas & Gandorfer, Markus & Trost, Benjamin & Ellmer, Frank & Baumecker, Michael, 2016. "Risk efficiency of irrigation to cereals in northeast Germany with respect to nitrogen fertilizer," Agricultural Systems, Elsevier, vol. 149(C), pages 132-138.
    16. Sergei Schaub & Nadja El Benni, 2024. "How do price (risk) changes influence farmers’ preferences to reduce fertilizer application?," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 365-383, March.
    17. Martin Henseler & Ruth Delzeit & Marcel Adenäuer & Sarah Baum & Peter Kreins, 2020. "Nitrogen Tax and Set-Aside as Greenhouse Gas Abatement Policies Under Global Change Scenarios: A Case Study for Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 299-329, July.
    18. Oyakhilomen Oyinbo & Jordan Chamberlin & Tahirou Abdoulaye & Miet Maertens, 2022. "Digital extension, price risk, and farm performance: experimental evidence from Nigeria," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 831-852, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finger, Robert, 2011. "Reductions of Agricultural Nitrogen Use Under Consideration of Production and Price Risks," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114356, European Association of Agricultural Economists.
    2. Benjamin Dequiedt & Emmanuel Servonnat, 2016. "Risk as a limit or an opportunity to mitigate GHG emissions? The case of fertilisation in agriculture," Working Papers 1606, Chaire Economie du climat.
    3. Murat Isik & Madhu Khanna, 2003. "Stochastic Technology, Risk Preferences, and Adoption of Site-Specific Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 305-317.
    4. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    5. Gupta, Shreekant & Sen, Partha & Verma, Saumya, 2016. "Impact of Climate Change on Foodgrain Yields in India," CEI Working Paper Series 2015-9, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    6. Finger, Robert, 2012. "Modeling the sensitivity of agricultural water use to price variability and climate change—An application to Swiss maize production," Agricultural Water Management, Elsevier, vol. 109(C), pages 135-143.
    7. Paulson, Nicholas D. & Babcock, Bruce A., 2010. "Readdressing the Fertilizer Problem," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(3), pages 1-17, December.
    8. Niklas Möhring & Martina Bozzola & Stefan Hirsch & Robert Finger, 2020. "Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 429-444, May.
    9. Vollenweider, Xavier & Di Falco, Salvatore & O’Donoghue, Cathal, 2011. "Risk preferences and voluntary agri-environmental schemes: does risk aversion explain the uptake of the Rural Environment Protection Scheme?," LSE Research Online Documents on Economics 37585, London School of Economics and Political Science, LSE Library.
    10. Monjardino, M. & McBeath, T. & Ouzman, J. & Llewellyn, R. & Jones, B., 2015. "Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt," Agricultural Systems, Elsevier, vol. 137(C), pages 108-118.
    11. Lehmann, Niklaus & Finger, Robert, 2012. "Optimizing whole-farm management considering price and climate risks," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122533, European Association of Agricultural Economists.
    12. Hurley, Terrance M., 2010. "A review of agricultural production risk in the developing world," Working Papers 188476, HarvestChoice.
    13. Thiagu Ranganathan & Sarthak Gaurav & Ashish Singh, 2014. "Anomaly in Decision Making Under Risk:Violation of Stochastic Dominance Among Farmers in Gujarat, India," IEG Working Papers 343, Institute of Economic Growth.
    14. Yesuf, Mahmud & Kassie, Menale & Köhlin, Gunnar, 2009. "Risk Implications of Farm Technology Adoption in the Ethiopian Highlands," Working Papers in Economics 404, University of Gothenburg, Department of Economics.
    15. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    16. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    17. Babcock, Bruce A. & Shogren, Jason F., 1995. "The cost of agricultural production risk," Agricultural Economics, Blackwell, vol. 12(2), pages 141-150, August.
    18. Jutta Roosen & David A. Hennessy, 2003. "Tests for the Role of Risk Aversion on Input Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 30-43.
    19. Metcalfe, Todd & Bosch, Darrell J. & Pease, James W. & Alley, Mark M. & Phillips, Steve B., 2007. "Yield Reserve Program Costs in the Virginia Coastal Plain," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 36(2), pages 1-16, October.
    20. Abedullah, & Pandey, Sushil, 2004. "Risk and Fertilizer Use in the Rainfed Rice Ecosystem of Tarlac, Philippines," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(1), pages 241-250, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:107:y:2012:i:c:p:13-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.