IDEAS home Printed from https://ideas.repec.org/p/hit/hitcei/2015-9.html
   My bibliography  Save this paper

Impact of Climate Change on Foodgrain Yields in India

Author

Listed:
  • Gupta, Shreekant
  • Sen, Partha
  • Verma, Saumya

Abstract

In India, agriculture accounts for about sixty percent of employment. How would climate change, that is expected to hit agriculture in poorer countries very hard, affect India's agriculture? We study the impact of climate change on the mean and variance of yields of three food grains — rice (India's major crop), sorghum and pearl millet — at the district level using a panel data set for 1966-2002. An agricultural production function is estimated with exogenous climate variables -- precipitation and temperature -- controlling for other non climate inputs. To capture the impact of climate extremes, climate variables are modelled as anomalies. The results show that climate change adversely affects mean and variance of crop yields. Rice yields are found to be sensitive to rainfall extremes, extremely high temperatures increase sorghum yield variability, with pearl millet yields invariant to both rainfall and temperature extremes.

Suggested Citation

  • Gupta, Shreekant & Sen, Partha & Verma, Saumya, 2016. "Impact of Climate Change on Foodgrain Yields in India," CEI Working Paper Series 2015-9, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hit:hitcei:2015-9
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/28286/wp2015-9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lahiri, Ashik Kumar & Roy, Prannoy, 1985. "Rainfall and supply-response : A study of rice in India," Journal of Development Economics, Elsevier, vol. 18(2-3), pages 315-334, August.
    2. Kanwar, Sunil, 2006. "Relative profitability, supply shifters and dynamic output response, in a developing economy," Journal of Policy Modeling, Elsevier, vol. 28(1), pages 67-88, January.
    3. Sébastien Foudi & Katrin Erdlenbruch, 2012. "The role of irrigation in farmers’ risk management strategies in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 39(3), pages 439-457, July.
    4. Planning Commission, 2013. "Press Note on Poverty Estimates, 2011-12," Working Papers id:5421, eSocialSciences.
    5. Kurosaki, Takashi & Wada, Kazuya, 2015. "Spatial Characteristics of Long-Term Changes in Indian Agricultural Production: District-Level Analysis, 1965-2007," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 5(1), July.
    6. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    7. Shreekant Gupta & Partha Sen & Suchita Srinivasan, 2014. "Impact Of Climate Change On The Indian Economy: Evidence From Food Grain Yields," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-29.
    8. Hemanshu Kumar & Rohini Somanathan, 2009. "Mapping Indian Districts Across Census Years, 1971-2001," Working papers 176, Centre for Development Economics, Delhi School of Economics.
    9. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    10. Kurosaki, Takashi & Wada, Kazuya, 2015. "Spatial Characteristics of Long-term Changes in Indian Agricultural Production: District-Level Analysis, 1965-2007," CEI Working Paper Series 2014-10, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    11. Atanu Saha & Arthur Havenner & Hovav Talpaz, 1997. "Stochastic production function estimation: small sample properties of ML versus FGLS," Applied Economics, Taylor & Francis Journals, vol. 29(4), pages 459-469.
    12. Chandra Kiran B. Krishnamurthy, 2012. "The Distributional Impacts of Climate Change on Indian Agriculture: A Quantile Regression Approach," Working Papers 2012-069, Madras School of Economics,Chennai,India.
    13. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    14. Rosegrant, Mark W. & Roumasset, James A., 1985. "The Effect Of Fertiliser On Risk: A Heteroscedastic Production Function With Measurable Stochastic Inputs," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 29(2), pages 1-15, August.
    15. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    16. Bharat Ramaswami, 1992. "Production Risk and Optimal Input Decisions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 860-869.
    17. Takashi Kurosaki & Kazuya Wada, 2015. "Spatial Characteristics of Long-Term Changes in Indian Agricultural Production: District-Level Analysis, 1965-2007," Journal, Review of Agrarian Studies, vol. 5(1), pages 1-38, January-J.
    18. D. Pattanaik, 2007. "Analysis of Rainfall Over Different Homogeneous Regions of India in Relation to Variability in Westward Movement Frequency of Monsoon Depressions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(3), pages 635-646, March.
    19. Kurosaki, Takashi & Wada, Kazuya, 2015. "Spatial Characteristics of Long-term Changes in Indian Agricultural Production: District-Level Analysis, 1965-2007," PRIMCED Discussion Paper Series 60, Institute of Economic Research, Hitotsubashi University.
    20. Santosh Poudel & Koji Kotani, 2013. "Climatic impacts on crop yield and its variability in Nepal: do they vary across seasons and altitudes?," Climatic Change, Springer, vol. 116(2), pages 327-355, January.
    21. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    22. William R. Cline, 2007. "Global Warming and Agriculture: Impact Estimates by Country," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 4037, October.
    23. Salvatore Di Falco & Jean‐Paul Chavas & Melinda Smale, 2007. "Farmer management of production risk on degraded lands: the role of wheat variety diversity in the Tigray region, Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 36(2), pages 147-156, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    2. Shreekant Gupta & Partha Sen & Suchita Srinivasan, 2014. "Impact Of Climate Change On The Indian Economy: Evidence From Food Grain Yields," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-29.
    3. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    4. Raju Mandal & Hiranya Nath, 2017. "Climate Change and indian Agriculture: Impacts on Crop Yield," Working Papers 1705, Sam Houston State University, Department of Economics and International Business.
    5. Catherine Benjamin & Ewen Gallic, 2017. "Effects of Climate Change on Agriculture: a European case study," Economics Working Paper Archive (University of Rennes 1 & University of Caen) 2017-16, Center for Research in Economics and Management (CREM), University of Rennes 1, University of Caen and CNRS.
    6. Saumya Verma & Shreekant Gupta & Partha Sen, 2020. "Does climate change make foodgrain yields more unpredictable? Evidence from India," Working papers 305, Centre for Development Economics, Delhi School of Economics.
    7. Finger, Robert, 2012. "Nitrogen use and the effects of nitrogen taxation under consideration of production and price risks," Agricultural Systems, Elsevier, vol. 107(C), pages 13-20.
    8. Finger, Robert, 2011. "Reductions of Agricultural Nitrogen Use Under Consideration of Production and Price Risks," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114356, European Association of Agricultural Economists.
    9. Witsanu Attavanich & Bruce McCarl, 2014. "How is CO 2 affecting yields and technological progress? A statistical analysis," Climatic Change, Springer, vol. 124(4), pages 747-762, June.
    10. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    11. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    12. Nath, Hiranya K. & Mandal, Raju, 2018. "Heterogeneous Climatic Impacts on Agricultural Production: Evidence from Rice Yield in Assam, India," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 15(1), June.
    13. V. Saravanakumar, "undated". "Impact of Climate Change on Yield of Major Food Crops in Tamil Nadu, India," Working papers 91, The South Asian Network for Development and Environmental Economics.
    14. Anubhab Pattanayak & K. S. Kavi Kumar, 2014. "Weather Sensitivity Of Rice Yield: Evidence From India," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-24.
    15. Ali Sardar Shahraki & Tommaso Caloiero & Ommolbanin Bazrafshan, 2023. "Influence of Climatic Factors on Yields of Pistachio, Mango, and Bananas in Iran," Sustainability, MDPI, vol. 15(11), pages 1-14, June.
    16. Kurosaki, Takashi & 黒崎, 卓 & Parinduri, Rasyad & Paul, Saumik, 2016. "Evaluating Efficiency Gains from Tenancy Reform Targeting a Heterogeneous Group of Sharecroppers: Evidence from India," CEI Working Paper Series 2016-10, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    17. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    18. Mekbib G. Haile & Tesfamicheal Wossen & Kindie Tesfaye & Joachim von Braun, 2017. "Impact of Climate Change, Weather Extremes, and Price Risk on Global Food Supply," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 55-75, June.
    19. Subhadra Banda, 2013. "The Case of Slum Rehabilitation in Delhi," Working Papers id:5522, eSocialSciences.
    20. Li, Zheng & Rejesus, Roderick M. & Zheng, Xiaoyong, 2018. "Nonparametric Estimation and Inference of Production Risk with Categorical Variables," 2018 Annual Meeting, August 5-7, Washington, D.C. 274400, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Climate change; agricultural impacts; developing countries;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:hitcei:2015-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Reiko Suzuki (email available below). General contact details of provider: https://edirc.repec.org/data/cehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.