IDEAS home Printed from https://ideas.repec.org/a/bla/ecinqu/v58y2020i1p294-318.html
   My bibliography  Save this article

The U.S. Labor Income Share And Automation Shocks

Author

Listed:
  • Nikolaos Charalampidis

Abstract

The causes and consequences of the 1964–2016 swings in the U.S. labor income share/labor share (LS) are parsed through the lens of a structural model estimated on aggregate and LS series jointly. Where conventional models fall short, the present model yields a counter‐cyclical LS unconditionally and in response to demand and monetary policy shocks, as well as a small wage pro‐cyclicality, via moderate wage indexation. Shifts in automation, workers' market power, investment efficiency, and the relative price of investment account for 54%, 24%, 6%, and 4% of LS fluctuations, respectively. Automation shocks explain the lion's share of the post‐2007 cyclical LS tumble and 11% of output cycles, and generate a distinctive counter‐cyclical labor response. (JEL E32, E25, E52)

Suggested Citation

  • Nikolaos Charalampidis, 2020. "The U.S. Labor Income Share And Automation Shocks," Economic Inquiry, Western Economic Association International, vol. 58(1), pages 294-318, January.
  • Handle: RePEc:bla:ecinqu:v:58:y:2020:i:1:p:294-318
    DOI: 10.1111/ecin.12829
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ecin.12829
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ecin.12829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean Holly & Ivan Petrella, 2012. "Factor Demand Linkages, Technology Shocks, and the Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 948-963, November.
    2. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    3. Per Krusell & Lee E. Ohanian & JosÈ-Victor RÌos-Rull & Giovanni L. Violante, 2000. "Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis," Econometrica, Econometric Society, vol. 68(5), pages 1029-1054, September.
    4. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    5. Miguel A León-Ledesma & Mathan Satchi, 2019. "Appropriate Technology and Balanced Growth," Review of Economic Studies, Oxford University Press, vol. 86(2), pages 807-835.
    6. Alejandro Justiniano & Giorgio E. Primiceri & Andrea Tambalotti, 2013. "Is There a Trade-Off between Inflation and Output Stabilization?," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 1-31, April.
    7. Furlanetto, Francesco & Seneca, Martin, 2014. "New Perspectives On Depreciation Shocks As A Source Of Business Cycle Fluctuations," Macroeconomic Dynamics, Cambridge University Press, vol. 18(6), pages 1209-1233, September.
    8. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 2000. "The role of investment-specific technological change in the business cycle," European Economic Review, Elsevier, vol. 44(1), pages 91-115, January.
    9. Bentolila Samuel & Saint-Paul Gilles, 2003. "Explaining Movements in the Labor Share," The B.E. Journal of Macroeconomics, De Gruyter, vol. 3(1), pages 1-33, October.
    10. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    11. Linnea Polgreen & Pedro Silos, 2008. "Capital-Skill Complementarity and Inequality: A Sensitivity Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(2), pages 302-313, April.
    12. Jordi Galí & Frank Smets & Rafael Wouters, 2012. "Unemployment in an Estimated New Keynesian Model," NBER Macroeconomics Annual, University of Chicago Press, vol. 26(1), pages 329-360.
    13. Boldrin, Michael & Horvath, Michael, 1995. "Labor Contracts and Business Cycles," Journal of Political Economy, University of Chicago Press, vol. 103(5), pages 972-1004, October.
    14. Alban Moura, 2018. "Investment Shocks, Sticky Prices, and the Endogenous Relative Price of Investment," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 27, pages 48-63, January.
    15. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    16. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    17. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    18. H. Uzawa, 1961. "Neutral Inventions and the Stability of Growth Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 28(2), pages 117-124.
    19. Olivier Blanchard & Francesco Giavazzi, 2003. "Macroeconomic Effects of Regulation and Deregulation in Goods and Labor Markets," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 879-907.
    20. Matthew Cocci & Marco Del Negro & Stefano Eusepi & Marc Giannoni & Raiden B. Hasegawa & M. Henry Linder & Argia M. Sbordone & Andrea Tambalotti, 2013. "The FRBNY DSGE model," Staff Reports 647, Federal Reserve Bank of New York.
    21. Enchuan Shao & Pedro Silos, 2014. "Accounting For The Cyclical Dynamics Of Income Shares," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 778-795, April.
    22. Erceg, Christopher J. & Henderson, Dale W. & Levin, Andrew T., 2000. "Optimal monetary policy with staggered wage and price contracts," Journal of Monetary Economics, Elsevier, vol. 46(2), pages 281-313, October.
    23. Federico Mandelman & Pau Rabanal & Juan Francisco Rubio-Ramirez & Diego Vilan, 2011. "Investment Specific Technology Shocks and International Business Cycles: An Empirical Assessment," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 136-155, January.
    24. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    25. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    26. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    27. Jeffrey D. Sachs & Laurence J. Kotlikoff, 2012. "Smart Machines and Long-Term Misery," NBER Working Papers 18629, National Bureau of Economic Research, Inc.
    28. Marco Del Negro & Marc P. Giannoni & Frank Schorfheide, 2015. "Inflation in the Great Recession and New Keynesian Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 168-196, January.
    29. Cristiano Cantore & Filippo Ferroni & Miguel León-Ledesma, 2021. "The Missing Link: Monetary Policy and The Labor Share," Journal of the European Economic Association, European Economic Association, vol. 19(3), pages 1592-1620.
    30. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    31. Brent Neiman, 2014. "The Global Decline of the Labor Share," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(1), pages 61-103.
    32. Lindé, Jesper, 2009. "The effects of permanent technology shocks on hours: Can the RBC-model fit the VAR evidence?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 597-613, March.
    33. Claudia Goldin & Lawrence F. Katz, 2007. "The Race between Education and Technology: The Evolution of U.S. Educational Wage Differentials, 1890 to 2005," NBER Working Papers 12984, National Bureau of Economic Research, Inc.
    34. Ascari, Guido & Ropele, Tiziano, 2007. "Optimal monetary policy under low trend inflation," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2568-2583, November.
    35. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-362, June.
    36. Alvarez-Cuadrado, Francisco & Long, Ngo Van & Poschke, Markus, 2018. "Capital-labor substitution, structural change and the labor income share," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 206-231.
    37. Jonas D. M. Fisher, 2006. "The Dynamic Effects of Neutral and Investment-Specific Technology Shocks," Journal of Political Economy, University of Chicago Press, vol. 114(3), pages 413-451, June.
    38. Jing Cynthia Wu & Fan Dora Xia, 2016. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 253-291, March.
    39. Mai Dao & Ms. Mitali Das & Zsoka Koczan & Weicheng Lian, 2017. "Why Is Labor Receiving a Smaller Share of Global Income? Theory and Empirical Evidence," IMF Working Papers 2017/169, International Monetary Fund.
    40. Gomme, Paul & Greenwood, Jeremy, 1995. "On the cyclical allocation of risk," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 91-124.
    41. Robert S. Chirinko, 2008. "ó: The Long And Short Of It," CESifo Working Paper Series 2234, CESifo.
    42. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    43. Christopher J. Nekarda & Valerie A. Ramey, 2020. "The Cyclical Behavior of the Price‐Cost Markup," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(S2), pages 319-353, December.
    44. Castaneda, Ana & Diaz-Gimenez, Javier & Rios-Rull, Jose-Victor, 1998. "Exploring the income distribution business cycle dynamics," Journal of Monetary Economics, Elsevier, vol. 42(1), pages 93-130, June.
    45. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    46. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    47. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    48. Kevin J. Lansing, 2015. "Asset Pricing with Concentrated Ownership of Capital and Distribution Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(4), pages 67-103, October.
    49. Kulish, Mariano & Morley, James & Robinson, Tim, 2017. "Estimating DSGE models with zero interest rate policy," Journal of Monetary Economics, Elsevier, vol. 88(C), pages 35-49.
    50. Michelle Alexopoulos, 2011. "Read All about It!! What Happens Following a Technology Shock?," American Economic Review, American Economic Association, vol. 101(4), pages 1144-1179, June.
    51. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    52. William D. Nordhaus, 2021. "Are We Approaching an Economic Singularity? Information Technology and the Future of Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 299-332, January.
    53. Greenwood, Jeremy & Hercowitz, Zvi & Huffman, Gregory W, 1988. "Investment, Capacity Utilization, and the Real Business Cycle," American Economic Review, American Economic Association, vol. 78(3), pages 402-417, June.
    54. Duffy, John & Papageorgiou, Chris, 2000. "A Cross-Country Empirical Investigation of the Aggregate Production Function Specification," Journal of Economic Growth, Springer, vol. 5(1), pages 87-120, March.
    55. Oliver J. Blanchard, 1997. "The Medium Run," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(2), pages 89-158.
    56. Sohei Kaihatsu & Takushi Kurozumi, 2014. "Sources of Business Fluctuations: Financial or Technology Shocks?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(2), pages 224-242, April.
    57. Maarten Goos & Alan Manning & Anna Salomons, 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," American Economic Review, American Economic Association, vol. 104(8), pages 2509-2526, August.
    58. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    59. Berg, Andrew & Buffie, Edward F. & Zanna, Luis-Felipe, 2018. "Should we fear the robot revolution? (The correct answer is yes)," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 117-148.
    60. Julio J. Rotemberg, 2003. "Stochastic Technical Progress, Smooth Trends, and Nearly Distinct Business Cycles," American Economic Review, American Economic Association, vol. 93(5), pages 1543-1559, December.
    61. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    62. Paul Levine & Joseph Pearlman & George Perendia & Bo Yang, 2012. "Endogenous Persistence in an estimated DSGE Model Under Imperfect Information," Economic Journal, Royal Economic Society, vol. 122(565), pages 1287-1312, December.
    63. Di Pace, Federico & Villa, Stefania, 2016. "Factor complementarity and labour market dynamics," European Economic Review, Elsevier, vol. 82(C), pages 70-112.
    64. Chirinko, Robert S., 2008. "[sigma]: The long and short of it," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 671-686, June.
    65. Ríos-Rull, José-Víctor & Santaeulàlia-Llopis, Raül, 2010. "Redistributive shocks and productivity shocks," Journal of Monetary Economics, Elsevier, vol. 57(8), pages 931-948, November.
    66. Mr. Yasser Abdih & Mr. Stephan Danninger, 2017. "What Explains the Decline of the U.S. Labor Share of Income? An Analysis of State and Industry Level Data," IMF Working Papers 2017/167, International Monetary Fund.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charalampidis, Nikolaos, 2022. "Top income shares, inequality, and business cycles: United States, 1957–2016," European Economic Review, Elsevier, vol. 150(C).
    2. Pablo Casas & José L. Torres, 2023. "Automation, automatic capital returns, and the functional income distribution," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(1), pages 113-135, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    2. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    3. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    4. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    5. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    6. Ríos-Rull, José-Víctor & Santaeulàlia-Llopis, Raül, 2010. "Redistributive shocks and productivity shocks," Journal of Monetary Economics, Elsevier, vol. 57(8), pages 931-948, November.
    7. Hikaru Saijo, 2019. "Technology Shocks and Hours Revisited: Evidence from Household Data," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 31, pages 347-362, January.
    8. Justiniano, Alejandro & Primiceri, Giorgio E. & Tambalotti, Andrea, 2010. "Investment shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 132-145, March.
    9. Mandelman, Federico S. & Zanetti, Francesco, 2014. "Flexible prices, labor market frictions and the response of employment to technology shocks," Labour Economics, Elsevier, vol. 26(C), pages 94-102.
    10. Dongya Koh & Raül Santaeulàlia-Llopis, 2017. "Countercyclical Elasticity of Substitution," Working Papers 946, Barcelona School of Economics.
    11. Tyler Atkinson & Michael Plante & Alexander Richter & Nathaniel Throckmorton, 2022. "Complementarity and Macroeconomic Uncertainty," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 44, pages 225-243, April.
    12. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    13. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    14. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    15. Dawson, John W. & Sturgill, Brad, 2022. "Market Institutions and Factor Shares Across Countries," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 266-289.
    16. Ghent, Andra C., 2009. "Comparing DSGE-VAR forecasting models: How big are the differences?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 864-882, April.
    17. Giuli, Francesco & Tancioni, Massimiliano, 2012. "Real rigidities, productivity improvements and investment dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 100-118.
    18. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    19. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    20. Thomet, Jacqueline & Wegmueller, Philipp, 2021. "Technology Shocks And Hours Worked: A Cross-Country Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 25(4), pages 1020-1052, June.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E25 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Aggregate Factor Income Distribution
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecinqu:v:58:y:2020:i:1:p:294-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/weaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.