IDEAS home Printed from https://ideas.repec.org/r/nat/natsus/v2y2019i2d10.1038_s41893-019-0222-5.html
   My bibliography  Save this item

Examining different recycling processes for lithium-ion batteries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
  2. Hetong Wang & Kuishuang Feng & Peng Wang & Yuyao Yang & Laixiang Sun & Fan Yang & Wei-Qiang Chen & Yiyi Zhang & Jiashuo Li, 2023. "China’s electric vehicle and climate ambitions jeopardized by surging critical material prices," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  3. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
  4. Ali, Hayder & Khan, Hassan Abbas & Pecht, Michael, 2022. "Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  5. Xiangxi Lou & Penglei Yan & Binglei Jiao & Qingye Li & Panpan Xu & Lei Wang & Liang Zhang & Muhan Cao & Guiling Wang & Zheng Chen & Qiao Zhang & Jinxing Chen, 2024. "Grave-to-cradle photothermal upcycling of waste polyesters over spent LiCoO2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  6. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
  7. Caleb Stetson & Denis Prodius & Hyeonseok Lee & Christopher Orme & Byron White & Harry Rollins & Daniel Ginosar & Ikenna C. Nlebedim & Aaron D. Wilson, 2022. "Solvent-driven fractional crystallization for atom-efficient separation of metal salts from permanent magnet leachates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  8. Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
  9. Daniel Fett & Christoph Fraunholz & Philipp Schneider, 2023. "Life cycle greenhouse gas emissions of residential battery storage systems: A German case study," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 182-195, February.
  10. Wang, Lei & Wang, Xiang & Yang, Wenxian, 2020. "Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers," Applied Energy, Elsevier, vol. 275(C).
  11. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  12. Martin David & Florian Koch, 2019. "“Smart Is Not Smart Enough!” Anticipating Critical Raw Material Use in Smart City Concepts: The Example of Smart Grids," Sustainability, MDPI, vol. 11(16), pages 1-11, August.
  13. Diana Roa & Knut Einar Rosendahl, 2023. "Policies for Material Circularity: the Case of Lithium," Circular Economy and Sustainability,, Springer.
  14. Jessica Dunn & Kabian Ritter & Jesús M. Velázquez & Alissa Kendall, 2023. "Should high‐cobalt EV batteries be repurposed? Using LCA to assess the impact of technological innovation on the waste hierarchy," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1277-1290, October.
  15. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  16. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  17. Hao Hao & Wenxian Xu & Fangfang Wei & Chuanliang Wu & Zhaoran Xu, 2022. "Reward–Penalty vs. Deposit–Refund: Government Incentive Mechanisms for EV Battery Recycling," Energies, MDPI, vol. 15(19), pages 1-18, September.
  18. Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
  19. Peiseler, Leopold & Cabrera Serrenho, André, 2022. "How can current German and EU policies be improved to enhance the reduction of CO2 emissions of road transport? Revising policies on electric vehicles informed by stakeholder and technical assessments," Energy Policy, Elsevier, vol. 168(C).
  20. Harper, Gavin D.J. & Kendrick, Emma & Anderson, Paul A. & Mrozik, Wojciech & Christensen, Paul & Lambert, Simon & Greenwood, David & Das, Prodip K. & Ahmeid, Mohamed & Milojevic, Zoran & Du, Wenjia & , 2023. "Roadmap for a sustainable circular economy in lithium-ion and future battery technologies," LSE Research Online Documents on Economics 118420, London School of Economics and Political Science, LSE Library.
  21. Guanjun Ji & Junxiong Wang & Zheng Liang & Kai Jia & Jun Ma & Zhaofeng Zhuang & Guangmin Zhou & Hui-Ming Cheng, 2023. "Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  22. Jun Ma & Junxiong Wang & Kai Jia & Zheng Liang & Guanjun Ji & Haocheng Ji & Yanfei Zhu & Wen Chen & Hui-Ming Cheng & Guangmin Zhou, 2024. "Subtractive transformation of cathode materials in spent Li-ion batteries to a low-cobalt 5 V-class cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  23. Andreas Wieland, 2021. "Dancing the Supply Chain: Toward Transformative Supply Chain Management," Journal of Supply Chain Management, Institute for Supply Management, vol. 57(1), pages 58-73, January.
  24. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  25. Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
  26. Zhiwen Zhou & Yiming Lai & Qin Peng & Jun Li, 2021. "Comparative Life Cycle Assessment of Merging Recycling Methods for Spent Lithium Ion Batteries," Energies, MDPI, vol. 14(19), pages 1-18, October.
  27. Philip Cooke, 2021. "The Lithium Wars: From Kokkola to the Congo for the 500 Mile Battery," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
  28. Mohammad Ali Rajaeifar & Marco Raugei & Bernhard Steubing & Anthony Hartwell & Paul A. Anderson & Oliver Heidrich, 2021. "Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1560-1571, December.
  29. Yanamandra, Kaushik & Pinisetty, Dinesh & Gupta, Nikhil, 2023. "Impact of carbon additives on lead-acid battery electrodes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  30. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  31. Lin, Shunda & Liu, Renlong & Guo, Shenghui, 2022. "High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo," Renewable Energy, Elsevier, vol. 181(C), pages 714-724.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.