IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4215-d533622.html
   My bibliography  Save this article

The Lithium Wars: From Kokkola to the Congo for the 500 Mile Battery

Author

Listed:
  • Philip Cooke

    (Mohn Center for Innovation & Regional Development, Department of Engineering, Western Norway University of Applied Sciences, 5020 Bergen, Norway)

Abstract

This paper presents an analysis and interpretation of the current state of play in the global value network of minerals mining, refining and transformation processes in the contemporary battery industry, which will power potentially crucial future industries for manufacture of electric vehicles (EVs) and solar-storage energy systems. The dark influence of the carbon lock-in landscape is gradually being mitigated under the challenge of achieving the “500 mile” battery charge, which would make a transformational difference in the replacement of renewably fuelled vehicles and storage systems, currently still predominantly driven by fossil fuels. The challenge has led to a “war” between manufacturers, miners and refiners, who have realised that the challenge has come alive while most have been vacillating. At an “individualist” rather than an “institutionalist” level, Elon Musk, for all his faults, deserves credit for “moving the market” in these two important industry sectors. This paper anatomises key events and processes stimulating change in this global economic activity through an “abductive” reasoning model and a qualitative “pattern recognition” methodology that proves valuable in achieving rational, probabilistic forecasts. Established incremental innovation characterises first responses in the “war” but research agencies like ARPA are active in funding research that may produce radical battery innovation in future.

Suggested Citation

  • Philip Cooke, 2021. "The Lithium Wars: From Kokkola to the Congo for the 500 Mile Battery," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4215-:d:533622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fangzhu Zhang & Philip Cooke, 2010. "Hydrogen and Fuel Cell Development in China: A Review," European Planning Studies, Taylor & Francis Journals, vol. 18(7), pages 1153-1168, July.
    2. Fiorenza Belussi, 2018. "New perspectives on the evolution of clusters," European Planning Studies, Taylor & Francis Journals, vol. 26(9), pages 1796-1814, September.
    3. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    4. Thomas Hoppe & Michiel Miedema, 2020. "A Governance Approach to Regional Energy Transition: Meaning, Conceptualization and Practice," Sustainability, MDPI, vol. 12(3), pages 1-28, January.
    5. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    6. Abel Ortego & Alicia Valero & Antonio Valero & Eliette Restrepo, 2018. "Vehicles and Critical Raw Materials: A Sustainability Assessment Using Thermodynamic Rarity," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1005-1015, October.
    7. Rebecca E. Ciez & J. F. Whitacre, 2019. "Examining different recycling processes for lithium-ion batteries," Nature Sustainability, Nature, vol. 2(2), pages 148-156, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Bellandi & Lisa De Propris, 2021. "Local Productive Systems’ Transitions to Industry 4.0+," Sustainability, MDPI, vol. 13(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    2. Marlene O’Sullivan, 2020. "Industrial life cycle: relevance of national markets in the development of new industries for energy technologies – the case of wind energy," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 1063-1107, September.
    3. Hiteva, Ralitsa & Foxon, Timothy J., 2021. "Beware the value gap: Creating value for users and for the system through innovation in digital energy services business models," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    4. Andersson, Johnn & Hellsmark, Hans & Sandén, Björn A., 2018. "Shaping factors in the emergence of technological innovations: The case of tidal kite technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 191-208.
    5. Sebastian Losacker & Hendrik Hansmeier & Jens Horbach & Ingo Liefner, 2023. "The geography of environmental innovation: a critical review and agenda for future research," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 43(2), pages 291-316, August.
    6. Barnikol, Julian & Liefner, Ingo, 2022. "The prospects of advanced frugal innovations in different economies," Technology in Society, Elsevier, vol. 71(C).
    7. Hedeler, Barbara & Hellsmark, Hans & Söderholm, Patrik, 2023. "Policy mixes and policy feedback: Implications for green industrial growth in the Swedish biofuels industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    9. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    10. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    11. Marcel Bednarz & Tom Broekel, 2020. "Pulled or pushed? The spatial diffusion of wind energy between local demand and supply," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(4), pages 893-916.
    12. Piotr Lis & Zuzanna Rataj & Katarzyna Suszyńska, 2022. "Implementation Risk Factors of Collaborative Housing in Poland: The Case of ‘Nowe Żerniki’ in Wrocław," JRFM, MDPI, vol. 15(3), pages 1-12, February.
    13. Natalie Slawinski & Jonatan Pinkse & Timo Busch & Subhabrata Bobby Banerjeed, 2014. "The role of short-termism and uncertainty in organizational inaction on climate change: multilevel framework," Working Papers hal-00961226, HAL.
    14. Jonas Heiberg & Bernhard Truffer, 2021. "The emergence of a global innovation system – a case study from the water sector," GEIST - Geography of Innovation and Sustainability Transitions 2021(09), GEIST Working Paper Series.
    15. Johannes Urpelainen, 2012. "How do electoral competition and special interests shape the stringency of renewable energy standards?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(1), pages 23-34, January.
    16. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    17. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    18. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    19. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4215-:d:533622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.