IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037599.html
   My bibliography  Save this article

Experimental study on trace moisture control of lithium iron phosphate

Author

Listed:
  • Fu, Yu
  • Zhang, Mingyu
  • Lin, Longyuan
  • Wang, Bin
  • Leng, Yuanjian
  • Chen, Haiyan
  • Lǖ, Juan

Abstract

LiFePO4 is considered as one of the mainstream positive electrodes materials for power batteries. Its moisture content is closely related to the battery cycle performance and multiplier performance. When the moisture content of LiFePO4 exceeds 600 ppm, the electrochemical performance is seriously degraded. However, it is fairly difficult to reduce its moisture content to below 1000 ppm with the conventional processes. Focusing on the requirements for the trace moisture content of LiFePO4, this study investigated the airflow grinding process inside the closed nitrogen drying system at the first time. The performance in reducing the moisture content in LiFePO4 was also compared. The results demonstrated the moisture content of LiFePO4 powder was lower than 600 ppm after crushing to the particle size of d50 = 1∼1.2 μm and d100 = 6.7–7.1 μm with closed nitrogen drying system under the conditions of the classifier rotation speed 1072 r∙min−1, the steam temperature 120 °C and the pressure 0.5 MPa, and the output capacity reached 210–230 kg h−1. The process gives full play to grinding and drying advantages and break through the drying limit of the traditional processes. It could be thought as a new process for LiFePO4 industrial production, achieving trace moisture drying and relatively high output simultaneously.

Suggested Citation

  • Fu, Yu & Zhang, Mingyu & Lin, Longyuan & Wang, Bin & Leng, Yuanjian & Chen, Haiyan & Lǖ, Juan, 2024. "Experimental study on trace moisture control of lithium iron phosphate," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037599
    DOI: 10.1016/j.energy.2024.133981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Libiao & Zuo, Hongyan & Zhang, Bin & Jia, Guohai, 2024. "Effects of the cold plate with airfoil fins on the cooling performance enhancement of the prismatic LiFePO4 battery pack," Energy, Elsevier, vol. 296(C).
    2. Kostiantyn Turcheniuk & Dmitry Bondarev & Vinod Singhal & Gleb Yushin, 2018. "Ten years left to redesign lithium-ion batteries," Nature, Nature, vol. 559(7715), pages 467-470, July.
    3. Rebecca E. Ciez & J. F. Whitacre, 2019. "Examining different recycling processes for lithium-ion batteries," Nature Sustainability, Nature, vol. 2(2), pages 148-156, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hetong Wang & Kuishuang Feng & Peng Wang & Yuyao Yang & Laixiang Sun & Fan Yang & Wei-Qiang Chen & Yiyi Zhang & Jiashuo Li, 2023. "China’s electric vehicle and climate ambitions jeopardized by surging critical material prices," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    3. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    4. Lei, Deyong & Wang, Yun & Fu, Jingfei & Zhu, Xiaobao & Shi, Jing & Wang, Yachao, 2024. "Electrochemical-thermal analysis of large-sized lithium-ion batteries: Influence of cell thickness and cooling strategy in charging," Energy, Elsevier, vol. 307(C).
    5. Zhiwen Zhou & Yiming Lai & Qin Peng & Jun Li, 2021. "Comparative Life Cycle Assessment of Merging Recycling Methods for Spent Lithium Ion Batteries," Energies, MDPI, vol. 14(19), pages 1-18, October.
    6. Lin, Shunda & Liu, Renlong & Guo, Shenghui, 2022. "High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo," Renewable Energy, Elsevier, vol. 181(C), pages 714-724.
    7. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    8. Ghadim, H. Benisi & Godin, A. & Veillere, A. & Duquesne, M. & Haillot, D., 2025. "Review of thermal management of electronics and phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    9. Burke, Andrew F. & Zhao, Jingyuan, 2025. "Advanced Battery Technologies: Bus, Heavy-Duty Vocational Truck, and Construction Machinery Applications," Institute of Transportation Studies, Working Paper Series qt5zx1k22k, Institute of Transportation Studies, UC Davis.
    10. Xiangxi Lou & Penglei Yan & Binglei Jiao & Qingye Li & Panpan Xu & Lei Wang & Liang Zhang & Muhan Cao & Guiling Wang & Zheng Chen & Qiao Zhang & Jinxing Chen, 2024. "Grave-to-cradle photothermal upcycling of waste polyesters over spent LiCoO2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    14. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
    15. Hanjiao Huang & Zongyou Li & Yanjun Gao & Tianqi Wang & Zihan Chen & Songjie Gan & Caizhen Yang & Qiyao Yu & Jian-Guo Zhang, 2025. "High Electrochemical Performance of Sodium-Ion Gel Polymer Electrolytes Achieved Through a Sandwich Design Strategy Combining Soft Polymers with a Rigid MOF," Energies, MDPI, vol. 18(5), pages 1-12, February.
    16. Mohammad Ali Rajaeifar & Marco Raugei & Bernhard Steubing & Anthony Hartwell & Paul A. Anderson & Oliver Heidrich, 2021. "Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1560-1571, December.
    17. Pankaj Narang & Pijus Kanti De & Mamta Kumari & Nita H. Shah, 2025. "A bottom-up method to analyze the environmental and economic impacts of recycling lithium-ion batteries with different cathode chemistries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 6831-6879, March.
    18. Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
    19. Yanamandra, Kaushik & Pinisetty, Dinesh & Gupta, Nikhil, 2023. "Impact of carbon additives on lead-acid battery electrodes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    20. Ali, Hayder & Khan, Hassan Abbas & Pecht, Michael, 2022. "Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.