IDEAS home Printed from https://ideas.repec.org/r/hal/journl/halshs-00003926.html
   My bibliography  Save this item

Climate strategy with CO2 capture from the air

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lackner, Klaus S., 2013. "The thermodynamics of direct air capture of carbon dioxide," Energy, Elsevier, vol. 50(C), pages 38-46.
  2. Sandra K. S. Boetcher & Matthew J. Traum & Ted Hippel, 2020. "Thermodynamic Model of CO2 Deposition in Cold Climates," Climatic Change, Springer, vol. 158(3), pages 517-530, February.
  3. repec:pri:cepsud:94bradford is not listed on IDEAS
  4. Heyen, Daniel, 2015. "Strategic Conflicts on the Horizon: R&D Incentives for Environmental Technologies," Working Papers 0584, University of Heidelberg, Department of Economics.
  5. Frédéric Babonneau & Ahmed Badran & Maroua Benlahrech & Alain Haurie & Maxime Schenckery & Marc Vielle, 2021. "Economic assessment of the development of CO2 direct reduction technologies in long-term climate strategies of the Gulf countries," Climatic Change, Springer, vol. 165(3), pages 1-18, April.
  6. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
  7. Daniel Heyen, 2016. "Strategic Conflicts On The Horizon: R&D Incentives For Environmental Technologies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-27, November.
  8. Adriana Marcucci & Socrates Kypreos & Evangelos Panos, 2017. "The road to achieving the long-term Paris targets: energy transition and the role of direct air capture," Climatic Change, Springer, vol. 144(2), pages 181-193, September.
  9. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2011. "Optimal CCS and air capture from heterogeneous energy consuming sectors," LERNA Working Papers 11.16.350, LERNA, University of Toulouse.
  10. Balint Simon, 2023. "Material flows and embodied energy of direct air capture: A cradle‐to‐gate inventory of selected technologies," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 646-661, June.
  11. L. Doyen & Patrice Dumas & P. Ambrosi, 2008. "Optimal timing of CO2 mitigation policies for a cost-effectiveness model," Post-Print hal-00716356, HAL.
  12. Michael Funke & Yu-Fu Chen & Nicole Glanemann, 2011. "Time is Running Out: The 2°C Target and Optimal Climate Policies," Quantitative Macroeconomics Working Papers 21111, Hamburg University, Department of Economics.
  13. Heyen, Daniel, 2016. "Strategic conflicts on the horizon: R&D incentives for environmental technologies," LSE Research Online Documents on Economics 68104, London School of Economics and Political Science, LSE Library.
  14. Zhou, Kui & Chaemchuen, Somboon & Verpoort, Francis, 2017. "Alternative materials in technologies for Biogas upgrading via CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1414-1441.
  15. Gregory F. Nemet and Adam R. Brandt, 2012. "Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO2 Air Capture," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  16. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
  17. Timothy A. Fox, 2012. "Energy Innovation and Avoiding Policy Complexity: The Air Capture Approach," Energy & Environment, , vol. 23(6-7), pages 1075-1092, October.
  18. Rob Swart & Natasha Marinova, 2010. "Policy options in a worst case climate change world," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(6), pages 531-549, August.
  19. J. Pires & A. Gonçalves & F. Martins & M. Alvim-Ferraz & M. Simões, 2014. "Effect of light supply on CO 2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1109-1117, October.
  20. Naomi Vaughan & Timothy Lenton, 2011. "A review of climate geoengineering proposals," Climatic Change, Springer, vol. 109(3), pages 745-790, December.
  21. Santori, Giulio & Charalambous, Charithea & Ferrari, Maria-Chiara & Brandani, Stefano, 2018. "Adsorption artificial tree for atmospheric carbon dioxide capture, purification and compression," Energy, Elsevier, vol. 162(C), pages 1158-1168.
  22. Renforth, P. & Jenkins, B.G. & Kruger, T., 2013. "Engineering challenges of ocean liming," Energy, Elsevier, vol. 60(C), pages 442-452.
  23. Moriarty, Patrick & Honnery, Damon, 2010. "A human needs approach to reducing atmospheric carbon," Energy Policy, Elsevier, vol. 38(2), pages 695-700, February.
  24. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
  25. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
  26. Mohammad Samari & Firas Ridha & Vasilije Manovic & Arturo Macchi & E. J. Anthony, 2020. "Direct capture of carbon dioxide from air via lime-based sorbents," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 25-41, January.
  27. Chappin, Emile J.L. & van der Lei, Telli, 2014. "Adaptation of interconnected infrastructures to climate change: A socio-technical systems perspective," Utilities Policy, Elsevier, vol. 31(C), pages 10-17.
  28. Graves, Christopher & Ebbesen, Sune D. & Mogensen, Mogens & Lackner, Klaus S., 2011. "Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 1-23, January.
  29. Mark Purdon, 2010. "The clean development mechanism and community forests in Sub-Saharan Africa: reconsidering Kyoto’s “moral position” on biocarbon sinks in the carbon market," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(6), pages 1025-1050, December.
  30. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
  31. Matovic, Darko, 2011. "Biochar as a viable carbon sequestration option: Global and Canadian perspective," Energy, Elsevier, vol. 36(4), pages 2011-2016.
  32. Abubakar, Zubairu & Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2018. "Experimental and numerical analysis of non-premixed oxy-combustion of hydrogen-enriched propane in a swirl stabilized combustor," Energy, Elsevier, vol. 165(PB), pages 1401-1414.
  33. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
  34. Scott Barrett, 2009. "The Coming Global Climate-Technology Revolution," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 53-75, Spring.
  35. Stefano Brandani, 2012. "Carbon Dioxide Capture from Air: A Simple Analysis," Energy & Environment, , vol. 23(2-3), pages 319-328, May.
  36. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
  37. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
  38. Ted Hippel, 2018. "Thermal removal of carbon dioxide from the atmosphere: energy requirements and scaling issues," Climatic Change, Springer, vol. 148(4), pages 491-501, June.
  39. Li, Canbing & Shi, Haiqing & Cao, Yijia & Kuang, Yonghong & Zhang, Yongjun & Gao, Dan & Sun, Liang, 2015. "Modeling and optimal operation of carbon capture from the air driven by intermittent and volatile wind power," Energy, Elsevier, vol. 87(C), pages 201-211.
  40. Vahid Barahimi & Monica Ho & Eric Croiset, 2023. "From Lab to Fab: Development and Deployment of Direct Air Capture of CO 2," Energies, MDPI, vol. 16(17), pages 1-33, September.
  41. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
  42. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.