IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i1d10.1007_s11027-019-9845-0.html
   My bibliography  Save this article

Direct capture of carbon dioxide from air via lime-based sorbents

Author

Listed:
  • Mohammad Samari

    (University of Ottawa)

  • Firas Ridha

    (CanmetENERGY)

  • Vasilije Manovic

    (Cranfield University)

  • Arturo Macchi

    (University of Ottawa)

  • E. J. Anthony

    (Cranfield University)

Abstract

Direct air capture (DAC) is a developing technology for removing carbon dioxide (CO2) from the atmosphere or from low-CO2-containing sources. In principle, it could be used to remove sufficient CO2 from the atmosphere to compensate for hard-to-decarbonize sectors, such as aviation, or even for polishing gas streams containing relatively low CO2 concentrations. In this paper, the performance of lime-based sorbents for CO2 capture from air in a fixed bed was investigated. The effects of sorbent type, particle diameter, air flow rate, and relative humidity on the breakthrough time, breakthrough shape, and global reaction rate over a series of capture and regeneration cycles were examined. The greatest reaction rates and conversions were obtained when the sorbents were pre-hydrated and inlet air was humidified to 55% relative humidity. Humidifying the air alone leads to axial carbonation gradients since there is competition between CO2 and water with the available CaO. Negligible conversion, over the duration of the experiment, is obtained in a dry system without pre-hydration and humid air. A shrinking-core gas–solid reaction model was fitted to the breakthrough curves in order to estimate the surface reaction and effective diffusion constants. Although the surface reaction constants of the two sorbents were similar, the pelletized limestone had a greater effective diffusivity due to its greater porosity. At mild calcination conditions with air at 850 °C, the pelletized particles maintained their activity over nine carbonation–calcination cycles with a conversion drop of only 9% points. However, calcination under oxy-fuel conditions (CO2 at 920 °C) reduced the pellet carbonation conversion from 81 to 59% and pore surface area from 12.01 to 3.20 m2/g after only 4 cycles. This research clearly shows that DAC using lime-based sorbents is technically feasible, and that regeneration schemes compatible with technologies like calcium looping (CaL) are applicable for the air capture option. Finally, this study demonstrates that DAC using lime-based materials can be in the future a strategy to address emissions from transportation and distributed CO2 sources and to mitigate climate change.

Suggested Citation

  • Mohammad Samari & Firas Ridha & Vasilije Manovic & Arturo Macchi & E. J. Anthony, 2020. "Direct capture of carbon dioxide from air via lime-based sorbents," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 25-41, January.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:1:d:10.1007_s11027-019-9845-0
    DOI: 10.1007/s11027-019-9845-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-019-9845-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-019-9845-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieter Lüthi & Martine Le Floch & Bernhard Bereiter & Thomas Blunier & Jean-Marc Barnola & Urs Siegenthaler & Dominique Raynaud & Jean Jouzel & Hubertus Fischer & Kenji Kawamura & Thomas F. Stocker, 2008. "High-resolution carbon dioxide concentration record 650,000–800,000 years before present," Nature, Nature, vol. 453(7193), pages 379-382, May.
    2. Erans, María & Jeremias, Michal & Zheng, Liya & Yao, Joseph G. & Blamey, John & Manovic, Vasilije & Fennell, Paul S. & Anthony, Edward J., 2018. "Pilot testing of enhanced sorbents for calcium looping with cement production," Applied Energy, Elsevier, vol. 225(C), pages 392-401.
    3. Sicong Tian & Jianguo Jiang & Zuotai Zhang & Vasilije Manovic, 2018. "Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. David Keith & Minh Ha-Duong & Joshua K. Stolaroff, 2006. "Climate strategy with CO2 capture from the air," Post-Print halshs-00003926, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    2. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
    3. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    4. Frisch, L.C. & Mathis, J.T. & Kettle, N.P. & Trainor, S.F., 2015. "Gauging perceptions of ocean acidification in Alaska," Marine Policy, Elsevier, vol. 53(C), pages 101-110.
    5. Martin L. Weitzman, 2011. "Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain Discounting," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 23-46, National Bureau of Economic Research, Inc.
    6. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    7. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    8. Michael E. Weber & Ian Bailey & Sidney R. Hemming & Yasmina M. Martos & Brendan T. Reilly & Thomas A. Ronge & Stefanie Brachfeld & Trevor Williams & Maureen Raymo & Simon T. Belt & Lukas Smik & Hendri, 2022. "Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    10. Heyen, Daniel, 2015. "Strategic Conflicts on the Horizon: R&D Incentives for Environmental Technologies," Working Papers 0584, University of Heidelberg, Department of Economics.
    11. Granville Tunnicliffe Wilson & John Haywood & Lynda Petherick, 2022. "Modeling cycles and interdependence in irregularly sampled geophysical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    12. Frédéric Babonneau & Ahmed Badran & Maroua Benlahrech & Alain Haurie & Maxime Schenckery & Marc Vielle, 2021. "Economic assessment of the development of CO2 direct reduction technologies in long-term climate strategies of the Gulf countries," Climatic Change, Springer, vol. 165(3), pages 1-18, April.
    13. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    14. G. M. Mkrtchyan & I. Yu. Blam & S. Yu. Kovalev & Yu. O. Tsvelodub, 2018. "Impact of Climate Change on the Subjective Well-Being of Households in Russia," Regional Research of Russia, Springer, vol. 8(3), pages 281-288, July.
    15. Jennifer Castle & David Hendry, 2020. "Identifying the Causal Role of CO2 during the Ice Ages," Economics Series Working Papers 898, University of Oxford, Department of Economics.
    16. J. Pires & A. Gonçalves & F. Martins & M. Alvim-Ferraz & M. Simões, 2014. "Effect of light supply on CO 2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1109-1117, October.
    17. Moriarty, Patrick & Honnery, Damon, 2010. "A human needs approach to reducing atmospheric carbon," Energy Policy, Elsevier, vol. 38(2), pages 695-700, February.
    18. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
    19. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    20. Graves, Christopher & Ebbesen, Sune D. & Mogensen, Mogens & Lackner, Klaus S., 2011. "Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:1:d:10.1007_s11027-019-9845-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.