IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920314598.html
   My bibliography  Save this article

The potential of molten metal oxide sorbents for carbon capture at high temperature: Conceptual design

Author

Listed:
  • Halliday, Cameron
  • Hatton, T. Alan

Abstract

Molten metal oxides represent a new opportunity for climate change mitigation through carbon capture. This study presents a conceptual coal fired power plant design that utilizes these liquid phase sorbents for high temperature CO2 capture coupled with the simultaneous removal of other acid gases. To effectively recover heat from the process both the absorber and desorber are located within the boiler and steam is used for near–isothermal regeneration of the sorbent. The potential thermodynamic opportunity was evaluated through process simulation, with results indicating molten sorbents could outperform the state-of-the-art amine-based systems for CO2 capture. An energy penalty as low as 6% points was projected for systems using molten sorbents, half that for the amine system. An initial economic evaluation confirmed the benefits of molten sorbents; for the optimized design, levelized cost of electricity increased 39% (25%–49%) relative to that for the power plant without carbon capture. The expected cost of CO2 avoided was $34/tonne ($18/tonne to $56/tonne) which is 38% (27%–50%) lower than that for the amine process and competitive with the social cost of CO2. Challenges were identified with future work proposed and justified by the opportunity to mitigate climate change at a lower cost than current systems allow.

Suggested Citation

  • Halliday, Cameron & Hatton, T. Alan, 2020. "The potential of molten metal oxide sorbents for carbon capture at high temperature: Conceptual design," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314598
    DOI: 10.1016/j.apenergy.2020.116016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sicong Tian & Jianguo Jiang & Zuotai Zhang & Vasilije Manovic, 2018. "Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Juan Alcalde & Stephanie Flude & Mark Wilkinson & Gareth Johnson & Katriona Edlmann & Clare E. Bond & Vivian Scott & Stuart M. V. Gilfillan & Xènia Ogaya & R. Stuart Haszeldine, 2018. "Estimating geological CO2 storage security to deliver on climate mitigation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Manzolini, G. & Sanchez Fernandez, E. & Rezvani, S. & Macchi, E. & Goetheer, E.L.V. & Vlugt, T.J.H., 2015. "Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology," Applied Energy, Elsevier, vol. 138(C), pages 546-558.
    4. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
    5. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    6. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Xiaoming Zhang & Yuting Wu & Chongfang Ma & Qiang Meng & Xiao Hu & Cenyu Yang, 2019. "Experimental Study on Temperature Distribution and Heat Losses of a Molten Salt Heat Storage Tank," Energies, MDPI, vol. 12(10), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
    2. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    2. Ana-Maria Cormos & Simion Dragan & Letitia Petrescu & Vlad Sandu & Calin-Cristian Cormos, 2020. "Techno-Economic and Environmental Evaluations of Decarbonized Fossil-Intensive Industrial Processes by Reactive Absorption & Adsorption CO 2 Capture Systems," Energies, MDPI, vol. 13(5), pages 1-16, March.
    3. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    4. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
    5. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    6. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    7. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    8. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    9. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    10. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    11. Ghanbari, Saeed & Mackay, Eric J. & Heinemann, Niklas & Alcalde, Juan & James, Alan & Allen, Michael J., 2020. "Impact of CO2 mixing with trapped hydrocarbons on CO2 storage capacity and security: A case study from the Captain aquifer (North Sea)," Applied Energy, Elsevier, vol. 278(C).
    12. Kim, Seonggon & Ko, Yunmo & Lee, Geun Jeong & Lee, Jae Won & Xu, Ronghuan & Ahn, Hyungseop & Kang, Yong Tae, 2023. "Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents," Energy, Elsevier, vol. 267(C).
    13. Haoyu Dou & Xuelin Dong & Zhiyin Duan & Yinji Ma & Deli Gao, 2020. "Cement Integrity Loss due to Interfacial Debonding and Radial Cracking during CO 2 Injection," Energies, MDPI, vol. 13(17), pages 1-18, September.
    14. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    15. Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
    16. Ouyang, Mingwei & Cao, Yan, 2023. "Utilizations of reaction exothermic heat to compensate the cost of the permanent CO2 sequestration through the geological mineral CO2 carbonation," Energy, Elsevier, vol. 284(C).
    17. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    18. Živković, Luka A. & Pohar, Andrej & Likozar, Blaž & Nikačević, Nikola M., 2016. "Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water–gas shift (SE–WGS) reaction for hydrogen production," Applied Energy, Elsevier, vol. 178(C), pages 844-855.
    19. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Tobiesen, Finn Andrew & Haugen, Geir & Hartono, Ardi, 2018. "A systematic procedure for process energy evaluation for post combustion CO2 capture: Case study of two novel strong bicarbonate-forming solvents," Applied Energy, Elsevier, vol. 211(C), pages 161-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.