IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04423-1.html
   My bibliography  Save this article

Estimating geological CO2 storage security to deliver on climate mitigation

Author

Listed:
  • Juan Alcalde

    (University of Aberdeen)

  • Stephanie Flude

    (University of Edinburgh)

  • Mark Wilkinson

    (University of Edinburgh)

  • Gareth Johnson

    (University of Edinburgh)

  • Katriona Edlmann

    (University of Edinburgh)

  • Clare E. Bond

    (University of Aberdeen)

  • Vivian Scott

    (University of Edinburgh)

  • Stuart M. V. Gilfillan

    (University of Edinburgh)

  • Xènia Ogaya

    (Universitat de Barcelona)

  • R. Stuart Haszeldine

    (University of Edinburgh)

Abstract

Carbon capture and storage (CCS) can help nations meet their Paris CO2 reduction commitments cost-effectively. However, lack of confidence in geologic CO2 storage security remains a barrier to CCS implementation. Here we present a numerical program that calculates CO2 storage security and leakage to the atmosphere over 10,000 years. This combines quantitative estimates of geological subsurface CO2 retention, and of surface CO2 leakage. We calculate that realistically well-regulated storage in regions with moderate well densities has a 50% probability that leakage remains below 0.0008% per year, with over 98% of the injected CO2 retained in the subsurface over 10,000 years. An unrealistic scenario, where CO2 storage is inadequately regulated, estimates that more than 78% will be retained over 10,000 years. Our modelling results suggest that geological storage of CO2 can be a secure climate change mitigation option, but we note that long-term behaviour of CO2 in the subsurface remains a key uncertainty.

Suggested Citation

  • Juan Alcalde & Stephanie Flude & Mark Wilkinson & Gareth Johnson & Katriona Edlmann & Clare E. Bond & Vivian Scott & Stuart M. V. Gilfillan & Xènia Ogaya & R. Stuart Haszeldine, 2018. "Estimating geological CO2 storage security to deliver on climate mitigation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04423-1
    DOI: 10.1038/s41467-018-04423-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04423-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04423-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mouli-Castillo, Julien & Heinemann, Niklas & Edlmann, Katriona, 2021. "Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study," Applied Energy, Elsevier, vol. 283(C).
    2. Callas, Catherine & Saltzer, Sarah D. & Steve Davis, J. & Hashemi, Sam S. & Kovscek, Anthony R. & Okoroafor, Esuru R. & Wen, Gege & Zoback, Mark D. & Benson, Sally M., 2022. "Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage," Applied Energy, Elsevier, vol. 324(C).
    3. Gilmore, Nicholas & Koskinen, Ilpo & van Gennip, Domenique & Paget, Greta & Burr, Patrick A. & Obbard, Edward G. & Daiyan, Rahman & Sproul, Alistair & Kay, Merlinde & Lennon, Alison & Konstantinou, Ge, 2022. "Clean energy futures: An Australian based foresight study," Energy, Elsevier, vol. 260(C).
    4. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    5. Ghanbari, Saeed & Mackay, Eric J. & Heinemann, Niklas & Alcalde, Juan & James, Alan & Allen, Michael J., 2020. "Impact of CO2 mixing with trapped hydrocarbons on CO2 storage capacity and security: A case study from the Captain aquifer (North Sea)," Applied Energy, Elsevier, vol. 278(C).
    6. Sun, Xiaolong & Alcalde, Juan & Bakhtbidar, Mahdi & Elío, Javier & Vilarrasa, Víctor & Canal, Jacobo & Ballesteros, Julio & Heinemann, Niklas & Haszeldine, Stuart & Cavanagh, Andrew & Vega-Maza, David, 2021. "Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain," Applied Energy, Elsevier, vol. 300(C).
    7. Ulrich Wolfgang Weber & Niko Kampman & Anja Sundal, 2021. "Techno-Economic Aspects of Noble Gases as Monitoring Tracers," Energies, MDPI, vol. 14(12), pages 1-17, June.
    8. Chai, Rukuan & Liu, Yuetian & Wang, Jingru & Liu, Qianjun & Rui, Zhenhua, 2022. "CO2 utilization and sequestration in Reservoir: Effects and mechanisms of CO2 electrochemical reduction," Applied Energy, Elsevier, vol. 323(C).
    9. Ajay Gambhir & Shivika Mittal & Robin D. Lamboll & Neil Grant & Dan Bernie & Laila Gohar & Adam Hawkes & Alexandre Köberle & Joeri Rogelj & Jason A. Lowe, 2023. "Adjusting 1.5 degree C climate change mitigation pathways in light of adverse new information," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Kenton A. Rod & Kirk J. Cantrell & Tamas Varga & Anil K. Battu & Christopher F. Brown, 2021. "Sealing of fractures in a representative CO2 reservoir caprock by migration of fines," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 483-492, June.
    11. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    12. Haoyu Dou & Xuelin Dong & Zhiyin Duan & Yinji Ma & Deli Gao, 2020. "Cement Integrity Loss due to Interfacial Debonding and Radial Cracking during CO 2 Injection," Energies, MDPI, vol. 13(17), pages 1-18, September.
    13. Manuel Wifling, 2020. "Financial precautions, carbon dioxide leakage, and the European Directive 2009/31/EC on carbon capture and storage (CCS)," Climatic Change, Springer, vol. 163(2), pages 787-806, November.
    14. Jing, Jing & Yang, Yanlin & Tang, Zhonghua, 2021. "Assessing the influence of injection temperature on CO2 storage efficiency and capacity in the sloping formation with fault," Energy, Elsevier, vol. 215(PA).
    15. Mark E. Capron & Jim R. Stewart & Antoine de Ramon N’Yeurt & Michael D. Chambers & Jang K. Kim & Charles Yarish & Anthony T. Jones & Reginald B. Blaylock & Scott C. James & Rae Fuhrman & Martin T. She, 2020. "Restoring Pre-Industrial CO 2 Levels While Achieving Sustainable Development Goals," Energies, MDPI, vol. 13(18), pages 1-30, September.
    16. Halliday, Cameron & Hatton, T. Alan, 2020. "The potential of molten metal oxide sorbents for carbon capture at high temperature: Conceptual design," Applied Energy, Elsevier, vol. 280(C).
    17. Bong Jae Lee & Jeong Il Lee & Soo Young Yun & Cheol-Soo Lim & Young-Kwon Park, 2020. "Economic Evaluation of Carbon Capture and Utilization Applying the Technology of Mineral Carbonation at Coal-Fired Power Plant," Sustainability, MDPI, vol. 12(15), pages 1-14, July.
    18. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    19. Connelly, D.P. & Bull, J.M. & Flohr, A. & Schaap, A. & Koopmans, D. & Blackford, J.C. & White, P.R. & James, R.H. & Pearce, C. & Lichtschlag, A. & Achterberg, E.P. & de Beer, D. & Roche, B. & Li, J. &, 2022. "Assuring the integrity of offshore carbon dioxide storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    20. Vo Thanh, Hung & Lee, Kang-Kun, 2022. "Application of machine learning to predict CO2 trapping performance in deep saline aquifers," Energy, Elsevier, vol. 239(PE).
    21. Ouyang, Mingwei & Cao, Yan, 2023. "Utilizations of reaction exothermic heat to compensate the cost of the permanent CO2 sequestration through the geological mineral CO2 carbonation," Energy, Elsevier, vol. 284(C).
    22. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04423-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.