IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp392-401.html
   My bibliography  Save this article

Pilot testing of enhanced sorbents for calcium looping with cement production

Author

Listed:
  • Erans, María
  • Jeremias, Michal
  • Zheng, Liya
  • Yao, Joseph G.
  • Blamey, John
  • Manovic, Vasilije
  • Fennell, Paul S.
  • Anthony, Edward J.

Abstract

One of the main challenges for commercialising calcium looping (CaL) as a CO2 capture technology is maintaining a high level of sorbent reactivity during long-term cycling. In order to mitigate the decay in carrying capacity, research has moved towards producing enhanced sorbents. However, this creates potential problems related to ease of scaling up production techniques and production costs, and raises the question as to whether such approaches can be used at large scale. On the other hand, a key advantage of CaL over other carbon capture technologies is synergy with the cement industry, i.e., use of spent sorbent as a feedstock for clinker production. In this work two enhanced materials: (i) limestone doped with HBr through a particle surface impregnation technique; and (ii) pellets prepared from limestone and calcium aluminate cement, were tested in a 25 kWth dual fluidised bed pilot-scale reactor in order to investigate their capture performance and mechanical stability under realistic CaL conditions. Moreover, the spent sorbent was then used as a raw material to make cement, which was characterised for phase and chemical composition as well as compressive strength. The HBr-doped limestone showed better performance in terms of both mechanical strength and stability of the CO2 uptake when compared to that of pellets. Furthermore, it was shown that the cement produced has similar characteristics and performance as those of commercial CEM 1 cement. This indicates the advantages of using the spent sorbent as feedstock for cement manufacture and shows the benefits of synthetic sorbents in CaL and suitability of end-use of spent sorbents for the cement industry, validating their synergy at pilot scale. Finally, this study demonstrates the possibility of using several practical techniques to improve the performance of CaL at the pilot scale, and more importantly demonstrates that commercial-grade cement can be made from the lime product from this technology.

Suggested Citation

  • Erans, María & Jeremias, Michal & Zheng, Liya & Yao, Joseph G. & Blamey, John & Manovic, Vasilije & Fennell, Paul S. & Anthony, Edward J., 2018. "Pilot testing of enhanced sorbents for calcium looping with cement production," Applied Energy, Elsevier, vol. 225(C), pages 392-401.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:392-401
    DOI: 10.1016/j.apenergy.2018.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918307323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ridha, Firas N. & Manovic, Vasilije & Macchi, Arturo & Anthony, Edward J., 2012. "The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al(OH)3 binder," Applied Energy, Elsevier, vol. 92(C), pages 415-420.
    2. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    3. Lenny Bernstein & Arthur Lee & Steven Crookshank, 2006. "Carbon dioxide capture and storage: a status report," Climate Policy, Taylor & Francis Journals, vol. 6(2), pages 241-246, March.
    4. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    5. Ridha, Firas N. & Manovic, Vasilije & Macchi, Arturo & Anthony, Edward J., 2015. "CO2 capture at ambient temperature in a fixed bed with CaO-based sorbents," Applied Energy, Elsevier, vol. 140(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi, Changyun & Li, Yingjie & Zhang, Wan & Wang, Zeyan, 2019. "Synthesis of a hollow microtubular Ca/Al sorbent with high CO2 uptake by hard templating," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. John F. Zapata & Afonso Azevedo & Carlos Fontes & Sergio Neves Monteiro & Henry A. Colorado, 2022. "Environmental Impact and Sustainability of Calcium Aluminate Cements," Sustainability, MDPI, vol. 14(5), pages 1-17, February.
    3. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    4. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Mohammad Samari & Firas Ridha & Vasilije Manovic & Arturo Macchi & E. J. Anthony, 2020. "Direct capture of carbon dioxide from air via lime-based sorbents," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 25-41, January.
    6. Ana-Maria Cormos & Simion Dragan & Letitia Petrescu & Vlad Sandu & Calin-Cristian Cormos, 2020. "Techno-Economic and Environmental Evaluations of Decarbonized Fossil-Intensive Industrial Processes by Reactive Absorption & Adsorption CO 2 Capture Systems," Energies, MDPI, vol. 13(5), pages 1-16, March.
    7. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    2. Chi, Changyun & Li, Yingjie & Zhang, Wan & Wang, Zeyan, 2019. "Synthesis of a hollow microtubular Ca/Al sorbent with high CO2 uptake by hard templating," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Su, Chenglin & Duan, Lunbo & Donat, Felix & Anthony, Edward John, 2018. "From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture," Applied Energy, Elsevier, vol. 210(C), pages 117-126.
    4. Mutch, Greg A. & Anderson, James A. & Vega-Maza, David, 2017. "Surface and bulk carbonate formation in calcium oxide during CO2 capture," Applied Energy, Elsevier, vol. 202(C), pages 365-376.
    5. Ma, Xiaotong & Li, Yingjie & Duan, Lunbo & Anthony, Edward & Liu, Hantao, 2018. "CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions," Applied Energy, Elsevier, vol. 225(C), pages 402-412.
    6. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    7. Xiaotong Ma & Yingjie Li & Yi Qian & Zeyan Wang, 2019. "A Carbide Slag-Based, Ca 12 Al 14 O 33 -Stabilized Sorbent Prepared by the Hydrothermal Template Method Enabling Efficient CO 2 Capture," Energies, MDPI, vol. 12(13), pages 1-17, July.
    8. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    10. Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
    11. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    12. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    13. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    14. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    15. Chen, Huichao & Zhang, Pingping & Duan, Yufeng & Zhao, Changsui, 2016. "Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol–gel process," Applied Energy, Elsevier, vol. 162(C), pages 390-400.
    16. Chen, Xiaoyi & Jin, Xiaogang & Liu, Zhimin & Ling, Xiang & Wang, Yan, 2018. "Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping," Energy, Elsevier, vol. 155(C), pages 128-138.
    17. Itskos, Grigorios & Grammelis, Panagiotis & Scala, Fabrizio & Pawlak-Kruczek, Halina & Coppola, Antonio & Salatino, Piero & Kakaras, Emmanuel, 2013. "A comparative characterization study of Ca-looping natural sorbents," Applied Energy, Elsevier, vol. 108(C), pages 373-382.
    18. Yu, Cheng-Hsiu & Chen, Ming-Tsz & Chen, Hao & Tan, Chung-Sung, 2016. "Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture," Applied Energy, Elsevier, vol. 175(C), pages 269-276.
    19. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.
    20. Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:392-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.