IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v203y2017icp412-421.html
   My bibliography  Save this article

CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions

Author

Listed:
  • Shi, Jiewen
  • Li, Yingjie
  • Zhang, Qing
  • Ma, Xiaotong
  • Duan, Lunbo
  • Zhou, Xingang

Abstract

A novel synthetic sorbent was fabricated from CaO and sepiolite by the hydration and its CO2 capture performance was investigated during the calcium looping cycles. The effects of the sorbent preparation conditions including preparation method, hydration temperature, hydration duration and sepiolite content on CO2 capture by synthetic CaO/sepiolite sorbent were examined in a dual fixed-bed reactor. The results showed that CaO/sepiolite possesses higher CO2 capture capacity than original CaO. CO2 capture capacity of CaO/sepiolite after 10 cycles is 39% and 56% higher than those of hydrated CaO and original CaO, respectively. The hydration temperature has an important effect on CO2 capture by CaO/sepiolite during the preparation. When the hydration temperature is 95°C, the obtained CaO/sepiolite exhibits the highest cyclic CO2 capture capacity, because the good supports such as MgO and Ca2SiO4 are formed in the calcined CaO/sepiolite at 95°C, which can improve the sintering resistance of CaO during the cycles. However, these supports are not found in the calcined CaO/sepiolite at the other hydration temperatures. In addition, CaO/sepiolite possesses more porous structure, larger surface area and pore volume, compared to hydrated CaO and original CaO. After the 1st calcination, the volume of pores in 10–100nm in diameter of CaO/sepiolite is much higher than those of hydrated CaO and original CaO, respectively, which facilitates CO2 capture of the sorbent. CaO/sepiolite appears promising as an effective and low-cost CO2 sorbent at calcium looping conditions.

Suggested Citation

  • Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
  • Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:412-421
    DOI: 10.1016/j.apenergy.2017.06.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Huichao & Zhao, Changsui & Yu, Weiwei, 2013. "Calcium-based sorbent doped with attapulgite for CO2 capture," Applied Energy, Elsevier, vol. 112(C), pages 67-74.
    2. Valverde, J.M. & Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A., 2014. "Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2," Applied Energy, Elsevier, vol. 126(C), pages 161-171.
    3. Valverde, Jose M. & Sanchez-Jimenez, Pedro E. & Perejon, Antonio & Perez-Maqueda, Luis A., 2013. "Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions," Applied Energy, Elsevier, vol. 108(C), pages 108-120.
    4. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    5. Chen, Huichao & Zhang, Pingping & Duan, Yufeng & Zhao, Changsui, 2016. "Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol–gel process," Applied Energy, Elsevier, vol. 162(C), pages 390-400.
    6. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    7. Tian, Sicong & Li, Kaimin & Jiang, Jianguo & Chen, Xuejing & Yan, Feng, 2016. "CO2 abatement from the iron and steel industry using a combined Ca–Fe chemical loop," Applied Energy, Elsevier, vol. 170(C), pages 345-352.
    8. Hafizi, A. & Rahimpour, M.R. & Hassanajili, S., 2016. "High purity hydrogen production via sorption enhanced chemical looping reforming: Application of 22Fe2O3/MgAl2O4 and 22Fe2O3/Al2O3 as oxygen carriers and cerium promoted CaO as CO2 sorbent," Applied Energy, Elsevier, vol. 169(C), pages 629-641.
    9. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    10. Wang, Ke & Hu, Xiumeng & Zhao, Pengfei & Yin, Zeguang, 2016. "Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture," Applied Energy, Elsevier, vol. 165(C), pages 14-21.
    11. Yu, Ching-tsung & Kuo, Huan-ting & Chen, Yi-ming, 2016. "Carbon dioxide removal using calcium aluminate carbonates on titanic oxide under warm-gas conditions," Applied Energy, Elsevier, vol. 162(C), pages 1122-1130.
    12. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    13. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2015. "Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters," Applied Energy, Elsevier, vol. 156(C), pages 331-343.
    14. Middleton, Richard S. & Eccles, Jordan K., 2013. "The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power," Applied Energy, Elsevier, vol. 108(C), pages 66-73.
    15. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    16. Wu, Yinghai & Wang, Chunbo & Tan, Yewen & Jia, Lufei & Anthony, Edward J., 2011. "Characterization of ashes from a 100kWth pilot-scale circulating fluidized bed with oxy-fuel combustion," Applied Energy, Elsevier, vol. 88(9), pages 2940-2948.
    17. Hu, Yue & Ahn, Hyungwoong, 2017. "Process integration of a Calcium-looping process with a natural gas combined cycle power plant for CO2 capture and its improvement by exhaust gas recirculation," Applied Energy, Elsevier, vol. 187(C), pages 480-488.
    18. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    19. Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A. & Valverde, J.M., 2014. "Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions," Applied Energy, Elsevier, vol. 118(C), pages 92-99.
    20. Valverde, J.M. & Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A., 2014. "Role of precalcination and regeneration conditions on postcombustion CO2 capture in the Ca-looping technology," Applied Energy, Elsevier, vol. 136(C), pages 347-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi, Changyun & Li, Yingjie & Zhang, Wan & Wang, Zeyan, 2019. "Synthesis of a hollow microtubular Ca/Al sorbent with high CO2 uptake by hard templating," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Xiaotong Ma & Yingjie Li & Yi Qian & Zeyan Wang, 2019. "A Carbide Slag-Based, Ca 12 Al 14 O 33 -Stabilized Sorbent Prepared by the Hydrothermal Template Method Enabling Efficient CO 2 Capture," Energies, MDPI, vol. 12(13), pages 1-17, July.
    3. Zhao, Chuanwen & Guo, Yafei & Yan, Junjie & Sun, Jian & Li, Weiling & Lu, Ping, 2019. "Enhanced CO2 sorption capacity of amine-tethered fly ash residues derived from co-firing of coal and biomass blends," Applied Energy, Elsevier, vol. 242(C), pages 453-461.
    4. Su, Chenglin & Duan, Lunbo & Donat, Felix & Anthony, Edward John, 2018. "From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture," Applied Energy, Elsevier, vol. 210(C), pages 117-126.
    5. Jung Hyun Kim & Woo Teck Kwon, 2019. "Semi-Dry Carbonation Process Using Fly Ash from Solid Refused Fuel Power Plant," Sustainability, MDPI, vol. 11(3), pages 1-10, February.
    6. Ma, Xiaotong & Li, Yingjie & Duan, Lunbo & Anthony, Edward & Liu, Hantao, 2018. "CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions," Applied Energy, Elsevier, vol. 225(C), pages 402-412.
    7. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    2. Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
    3. Su, Chenglin & Duan, Lunbo & Donat, Felix & Anthony, Edward John, 2018. "From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture," Applied Energy, Elsevier, vol. 210(C), pages 117-126.
    4. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    5. Chi, Changyun & Li, Yingjie & Zhang, Wan & Wang, Zeyan, 2019. "Synthesis of a hollow microtubular Ca/Al sorbent with high CO2 uptake by hard templating," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Ma, Xiaotong & Li, Yingjie & Duan, Lunbo & Anthony, Edward & Liu, Hantao, 2018. "CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions," Applied Energy, Elsevier, vol. 225(C), pages 402-412.
    7. Gong, Xuzhong & Zhang, Tong & Zhang, Junqiang & Wang, Zhi & Liu, Junhao & Cao, Jianwei & Wang, Chuan, 2022. "Recycling and utilization of calcium carbide slag - current status and new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2016. "Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture," Applied Energy, Elsevier, vol. 183(C), pages 1418-1427.
    9. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Xie, Xin & Li, Yingjie & Wang, Wenjing & Shi, Lei, 2014. "HCl removal using cycled carbide slag from calcium looping cycles," Applied Energy, Elsevier, vol. 135(C), pages 391-401.
    11. Sánchez Jiménez, Pedro E. & Perejón, Antonio & Benítez Guerrero, Mónica & Valverde, José M. & Ortiz, Carlos & Pérez Maqueda, Luis A., 2019. "High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 235(C), pages 543-552.
    12. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    13. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    14. Tian, Sicong & Li, Kaimin & Jiang, Jianguo & Chen, Xuejing & Yan, Feng, 2016. "CO2 abatement from the iron and steel industry using a combined Ca–Fe chemical loop," Applied Energy, Elsevier, vol. 170(C), pages 345-352.
    15. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    16. Benitez-Guerrero, Monica & Valverde, Jose Manuel & Perejon, Antonio & Sanchez-Jimenez, Pedro E. & Perez-Maqueda, Luis A., 2018. "Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power," Applied Energy, Elsevier, vol. 210(C), pages 108-116.
    17. Jing, Jie-ying & Zhang, Xue-wei & Li, Qing & Li, Ting-yu & Li, Wen-ying, 2018. "Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere," Applied Energy, Elsevier, vol. 220(C), pages 419-425.
    18. Claudia Cristina Sanchez Moore & Luiz Kulay, 2019. "Effect of the Implementation of Carbon Capture Systems on the Environmental, Energy and Economic Performance of the Brazilian Electricity Matrix," Energies, MDPI, vol. 12(2), pages 1-18, January.
    19. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.
    20. Živković, Luka A. & Pohar, Andrej & Likozar, Blaž & Nikačević, Nikola M., 2016. "Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water–gas shift (SE–WGS) reaction for hydrogen production," Applied Energy, Elsevier, vol. 178(C), pages 844-855.

    More about this item

    Keywords

    Sepiolite; CaO; Hydration; Calcium looping; CO2 capture;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:412-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.