IDEAS home Printed from https://ideas.repec.org/r/ese/iserwp/2009-32.html
   My bibliography  Save this item

‘Google it!’ Forecasting the US unemployment rate with a Google job search index

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nymand-Andersen, Per & Pantelidis, Emmanouil, 2018. "Google econometrics: nowcasting euro area car sales and big data quality requirements," Statistics Paper Series 30, European Central Bank.
  2. David Iselin & Boriss Siliverstovs, 2013. "Mit Zeitungen Konjunkturprognosen erstellen: Eine Vergleichsstudie für die Schweiz und Deutschland," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 7(3), pages 104-117, September.
  3. Luigi Curini & Stefano Iacus & Luciano Canova, 2015. "Measuring Idiosyncratic Happiness Through the Analysis of Twitter: An Application to the Italian Case," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 121(2), pages 525-542, April.
  4. Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
  5. Michael R. Baye & Babur De los Santos & Matthijs R. Wildenbeest, 2015. "Searching for Physical and Digital Media: The Evolution of Platforms for Finding Books," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 137-165, National Bureau of Economic Research, Inc.
  6. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
  7. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
  8. Karaman Örsal, Deniz Dilan, 2021. "Onlinedaten und Konsumentscheidungen: Voraussagen anhand von Daten aus Social Media und Suchmaschinen," Edition HWWI: Chapters, in: Straubhaar, Thomas (ed.), Neuvermessung der Datenökonomie, volume 6, pages 157-172, Hamburg Institute of International Economics (HWWI).
  9. Pete Richardson, 2018. "Nowcasting and the Use of Big Data in Short-Term Macroeconomic Forecasting: A Critical Review," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 505-506, pages 65-87.
  10. Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
  11. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
  12. Monokroussos, George & Zhao, Yongchen, 2020. "Nowcasting in real time using popularity priors," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1173-1180.
  13. David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
  14. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
  15. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
  16. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
  17. Pan, Wei-Fong, 2019. "Building sectoral job search indices for the United States," Economics Letters, Elsevier, vol. 180(C), pages 89-93.
  18. Maria De Paola & Vincenzo Scoppa, 2013. "Consumers’ Reactions to Negative Information on Product Quality: Evidence from Scanner Data," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 42(3), pages 235-280, May.
  19. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
  20. Alessia Naccarato & Andrea Pierini & Stefano Falorsi, 2015. "Using Google Trend Data To Predict The Italian Unemployment Rate," Departmental Working Papers of Economics - University 'Roma Tre' 0203, Department of Economics - University Roma Tre.
  21. Torsten Schmidt & Simeon Vosen, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 0382, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
  22. Pietro Giorgio Lovaglio & Mario Mezzanzanica & Emilio Colombo, 2020. "Comparing time series characteristics of official and web job vacancy data," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 85-98, February.
  23. Rodrigo Mulero & Alfredo García-Hiernaux, 2021. "Forecasting Spanish unemployment with Google Trends and dimension reduction techniques," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(3), pages 329-349, September.
  24. Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
  25. Yann Algan & Elizabeth Beasley & Florian Guyot & Kazuhito Higa & Fabrice Murtin & Claudia Senik, 2016. "Big Data Measures of Well-Being: Evidence From a Google Well-Being Index in the United States," OECD Statistics Working Papers 2016/3, OECD Publishing.
  26. Konstantin Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?," KOF Working papers 10-256, KOF Swiss Economic Institute, ETH Zurich.
  27. Dimpfl, Thomas & Langen, Tobias, 2015. "A Cross-Country Analysis of Unemployment and Bonds with Long-Memory Relations," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112921, Verein für Socialpolitik / German Economic Association.
  28. Yann Algan & Elizabeth Beasley & Florian Guyot & Kazuhito Higad & Fabrice Murtin & Claudia Senik, 2015. "Big Data Measures of Well-Being: Evidence from a Google Well-Being Index in the US," SciencePo Working papers Main hal-03429943, HAL.
  29. Kholodilin, Konstantin A. & Siliverstovs, Boriss, 2012. "Measuring regional inequality by internet car price advertisements: Evidence for Germany," Economics Letters, Elsevier, vol. 116(3), pages 414-417.
  30. Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
  31. Agüero, Jorge M. & Beleche, Trinidad, 2017. "Health shocks and their long-lasting impact on health behaviors: Evidence from the 2009 H1N1 pandemic in Mexico," Journal of Health Economics, Elsevier, vol. 54(C), pages 40-55.
  32. Periklis Gogas & Theophilos Papadimitriou & Emmanouil Sofianos, 2022. "Forecasting unemployment in the euro area with machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 551-566, April.
  33. Thomas Dimpfl & Tobias Langen, 2019. "How Unemployment Affects Bond Prices: A Mixed Frequency Google Nowcasting Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 551-573, August.
  34. Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
  35. Francesco, D'Amuri, 2009. "Predicting unemployment in short samples with internet job search query data," MPRA Paper 18403, University Library of Munich, Germany.
  36. Aleksandar Bradic, 2012. "The Role of Social Feedback in Financing of Technology Ventures," Papers 1301.2196, arXiv.org.
  37. repec:spo:wpmain:info:hdl:2441/5k53daedc2827oa91tfpuscvbn is not listed on IDEAS
  38. Pietro Giorgio Lovaglio, 2022. "Do job vacancies variations anticipate employment variations by sector? Some preliminary evidence from Italy," LABOUR, CEIS, vol. 36(1), pages 71-93, March.
  39. Rodrigo Mulero & Alfredo Garcia-Hiernaux, 2023. "Forecasting unemployment with Google Trends: age, gender and digital divide," Empirical Economics, Springer, vol. 65(2), pages 587-605, August.
  40. Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
  41. Askitas, Nikos & Zimmermann, Klaus F., 2011. "Health and Well-Being in the Crisis," IZA Discussion Papers 5601, Institute of Labor Economics (IZA).
  42. Scott Baker & Andrey Fradkin, 2011. "What Drives Job Search? Evidence from Google Search Data," Discussion Papers 10-020, Stanford Institute for Economic Policy Research.
  43. Jaroslav Pavlicek & Ladislav Kristoufek, 2014. "Can Google searches help nowcast and forecast unemployment rates in the Visegrad Group countries?," Papers 1408.6639, arXiv.org.
  44. Scheffel, Eric Michael, 2012. "Political uncertainty in a data-rich environment," MPRA Paper 37318, University Library of Munich, Germany.
  45. Olivier Gergaud & Victor Ginsburgh, 2016. "Evaluating the Economic Effects of Cultural Events," Working Papers ECARES ECARES 2016-24, ULB -- Universite Libre de Bruxelles.
  46. repec:zbw:rwirep:0382 is not listed on IDEAS
  47. Park, Sungjun & Kim, Jinsoo, 2018. "The effect of interest in renewable energy on US household electricity consumption: An analysis using Google Trends data," Renewable Energy, Elsevier, vol. 127(C), pages 1004-1010.
  48. Azusa Matsumoto & Kohei Matsumura & Noriyuki Shiraki, 2013. "Potential of Search Data in Assessment of Current Economic Conditions," Bank of Japan Research Papers 2013-04-18, Bank of Japan.
  49. repec:hal:spmain:info:hdl:2441/5k53daedc2827oa91tfpuscvbn is not listed on IDEAS
  50. Nuno Barreira & Pedro Godinho & Paulo Melo, 2013. "Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends," Netnomics, Springer, vol. 14(3), pages 129-165, November.
  51. Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
  52. Jorge M. Agüero & Trinidad Beleche, 2016. "Health Shocks and the Long-Lasting Change in Health Behaviors: Evidence from Mexico," Working papers 2016-26, University of Connecticut, Department of Economics.
  53. Bai, Lijuan & Yan, Xiangbin & Yu, Guang, 2019. "Impact of CEO media appearance on corporate performance in social media," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
  54. Florian Schaffner, 2015. "Predicting US bank failures with internet search volume data," ECON - Working Papers 214, Department of Economics - University of Zurich.
  55. Schmidt, Torsten & Vosen, Simeon, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 382, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  56. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
  57. Yann Algan & Elizabeth Beasley & Florian Guyot & Kazuhito Higad & Fabrice Murtin & Claudia Senik, 2015. "Big Data Measures of Well-Being: Evidence from a Google Well-Being Index in the US," Sciences Po publications info:hdl:2441/5k53daedc28, Sciences Po.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.