IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v16y2012i8p6220-6238.html
   My bibliography  Save this item

Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
  2. Emmanuel Hache & Marine Simoën & Gondia Sokhna Seck & Clément Bonnet & Aymen Jabberi, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, CEPII research center, issue 163, pages 114-133.
  3. Dincbas, Tugba & Ergeneli, Azize & Yigitbasioglu, Hakan, 2021. "Clean technology adoption in the context of climate change: Application in the mineral products industry," Technology in Society, Elsevier, vol. 64(C).
  4. Hurmekoski, Elias & Jonsson, Ragnar & Nord, Tomas, 2015. "Context, drivers, and future potential for wood-frame multi-story construction in Europe," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 181-196.
  5. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  6. Michele Fioretti, 2022. "Caring or Pretending to Care? Social Impact, Firms' Objectives, and Welfare (former title: Social Responsibility and Firm's Objectives)," SciencePo Working papers Main hal-03393065, HAL.
  7. Adewumi John Babafemi & Branko Šavija & Suvash Chandra Paul & Vivi Anggraini, 2018. "Engineering Properties of Concrete with Waste Recycled Plastic: A Review," Sustainability, MDPI, vol. 10(11), pages 1-26, October.
  8. Giacomo Bruni & Alessandra De Santis & Carlos Herce & Luigi Leto & Chiara Martini & Fabrizio Martini & Marcello Salvio & Federico Alberto Tocchetti & Claudia Toro, 2021. "From Energy Audit to Energy Performance Indicators (EnPI): A Methodology to Characterize Productive Sectors. The Italian Cement Industry Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
  9. Mack-Vergara, Yazmin L. & John, Vanderley M., 2017. "Life cycle water inventory in concrete production—A review," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 227-250.
  10. Youliang Huang & Yan Ning & Tao Zhang & Jiajie Wu, 2016. "Measuring Carbon Emissions of Pavement Construction in China," Sustainability, MDPI, vol. 8(8), pages 1-13, July.
  11. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
  12. Han-Seung Lee & Xiao-Yong Wang, 2016. "Evaluation of the Carbon Dioxide Uptake of Slag-Blended Concrete Structures, Considering the Effect of Carbonation," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
  13. Hurmekoski, Elias & Sjølie, Hanne K., 2018. "Comparing forest sector modelling and qualitative foresight analysis: Cases on wood products industry," Journal of Forest Economics, Elsevier, vol. 31(C), pages 11-16.
  14. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
  15. Xiangzhao FENG & Oleg LUGOVOY & Sheng YAN & Hu QIN, 2016. "Co-Benefits of CO2 and NOx Emission Control in China’s Cement Industry," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-20, December.
  16. Danyang Cheng & David M. Reiner & Fan Yang & Can Cui & Jing Meng & Yuli Shan & Yunhui Liu & Shu Tao & Dabo Guan, 2023. "Projecting future carbon emissions from cement production in developing countries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  17. Wang, Wenjing & Li, Yingjie & Xie, Xin & Sun, Rongyue, 2014. "Effect of the presence of HCl on cyclic CO2 capture of calcium-based sorbent in calcium looping process," Applied Energy, Elsevier, vol. 125(C), pages 246-253.
  18. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
  19. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  20. Tae Hyoung Kim & Chang U Chae & Gil Hwan Kim & Hyoung Jae Jang, 2016. "Analysis of CO 2 Emission Characteristics of Concrete Used at Construction Sites," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
  21. Jozef Švajlenka & Mária Kozlovská, 2020. "Analysis of the Energy Balance of Constructions Based on Wood during Their Use in Connection with CO 2 Emissions," Energies, MDPI, vol. 13(18), pages 1-16, September.
  22. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
  23. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
  24. Ä°rem Åžanal, 2018. "Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 366-378, April.
  25. Luo, Zongwei & Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Hazen, Benjamin & Roubaud, David, 2017. "Sustainable production framework for cement manufacturing firms: A behavioural perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 495-502.
  26. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
  27. Murshed, Muntasir & Apergis, Nicholas & Alam, Md Shabbir & Khan, Uzma & Mahmud, Sakib, 2022. "The impacts of renewable energy, financial inclusivity, globalization, economic growth, and urbanization on carbon productivity: Evidence from net moderation and mediation effects of energy efficiency," Renewable Energy, Elsevier, vol. 196(C), pages 824-838.
  28. Sun, Xiaohua & Dong, Yan & Wang, Yun & Ren, Junlin, 2022. "Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects," Ecological Economics, Elsevier, vol. 193(C).
  29. Bergen, Sophia L. & Zemberekci, Lyn & Nair, Sriramya Duddukuri, 2022. "A review of conventional and alternative cementitious materials for geothermal wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  30. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
  31. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
  32. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
  33. Jakob Lederer & Andreas Gassner & Florian Keringer & Ursula Mollay & Christoph Schremmer & Johann Fellner, 2019. "Material Flows and Stocks in the Urban Building Sector: A Case Study from Vienna for the Years 1990–2015," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
  34. Fan Dai & Ling Xiong & Ding Ma, 2017. "How to Set the Allowance Benchmarking for Cement Industry in China’s Carbon Market: Marginal Analysis and the Case of the Hubei Emission Trading Pilot," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
  35. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
  36. Stefan Lechtenböhmer & Clemens Schneider & María Yetano Roche & Samuel Höller, 2015. "Re-Industrialisation and Low-Carbon Economy—Can They Go Together? Results from Stakeholder-Based Scenarios for Energy-Intensive Industries in the German State of North Rhine Westphalia," Energies, MDPI, vol. 8(10), pages 1-26, October.
  37. Jamiu Adetayo Adeniran & Rafiu Olasunkanmi Yusuf & Adeniyi Saheed Aremu & Temitope Mariam Aareola, 2019. "Exergetic analysis and pollutants emission from a rotary kiln system in a major cement manufacturing plant," Energy & Environment, , vol. 30(4), pages 601-616, June.
  38. Wang, JingJing & Wang, YuanFeng & Sun, YiWen & Tingley, Danielle Densley & Zhang, YuRong, 2017. "Life cycle sustainability assessment of fly ash concrete structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1162-1174.
  39. Fred Edmond Boafo & Jin-Hee Kim & Jun-Tae Kim, 2016. "Performance of Modular Prefabricated Architecture: Case Study-Based Review and Future Pathways," Sustainability, MDPI, vol. 8(6), pages 1-16, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.