IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp1162-1174.html
   My bibliography  Save this article

Life cycle sustainability assessment of fly ash concrete structures

Author

Listed:
  • Wang, JingJing
  • Wang, YuanFeng
  • Sun, YiWen
  • Tingley, Danielle Densley
  • Zhang, YuRong

Abstract

Concrete is one of the most widespread construction materials in the world, but its production is responsible for significant amounts of energy consumption, and even greater greenhouse gas emissions. However, the substitution of Portland cement with fly ash (FA) reduces both the energy consumption and the greenhouse gas emissions generated during the production of clinker. Currently, most studies of FA concrete focus on mechanical properties, sustainability assessments (environment, society and economy) of FA during its life cycle have not been reported. This paper presents a life cycle sustainability assessment (LCSA) that brings together environmental, economic and social impacts using a proposed three-dimensional coordinate diagram to combine the different units into a single sustainable value. The assessment method is applied to different substitutions of FA in concrete to ascertain the optimum substitution percentage across these three factors. Monte Carlo simulation is then used to evaluate the durability of concrete structures with different FA addition in order to calculate their service life. A case study is conducted of a bridge structure with different FA substitutions; this demonstrates that the addition of FA would improve the sustainability of concrete significantly in the short term. However, when the durability and service life of the structure are taken into account, without maintenance, the use of FA concrete may not improve the environment performance due a potentially shortened service life, but it can reduce the social burden and save costs significantly over the long term.

Suggested Citation

  • Wang, JingJing & Wang, YuanFeng & Sun, YiWen & Tingley, Danielle Densley & Zhang, YuRong, 2017. "Life cycle sustainability assessment of fly ash concrete structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1162-1174.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1162-1174
    DOI: 10.1016/j.rser.2017.05.232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308791
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu Liu, 2015. "China?s Carbon Emissions Report 2015," Working Paper 269176, Harvard University OpenScholar.
    2. Park, Junghoon & Tae, Sungho & Kim, Taehyung, 2012. "Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2940-2946.
    3. Islam, Hamidul & Jollands, Margaret & Setunge, Sujeeva, 2015. "Life cycle assessment and life cycle cost implication of residential buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 129-140.
    4. Shen, Lei & Gao, Tianming & Zhao, Jianan & Wang, Limao & Wang, Lan & Liu, Litao & Chen, Fengnan & Xue, Jingjing, 2014. "Factory-level measurements on CO2 emission factors of cement production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 337-349.
    5. Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
    6. Kim, Taehyoung & Tae, Sungho & Roh, Seungjun, 2013. "Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 729-741.
    7. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuowen Zhou & Min Zhou & Yuanfeng Wang & Yuanlin Gao & Yinshan Liu & Chengcheng Shi & Yongmao Lu & Tong Zhou, 2020. "Bibliometric and Social Network Analysis of Civil Engineering Sustainability Research from 2015 to 2019," Sustainability, MDPI, Open Access Journal, vol. 12(17), pages 1-18, August.
    2. Christina Wulf & Jasmin Werker & Christopher Ball & Petra Zapp & Wilhelm Kuckshinrichs, 2019. "Review of Sustainability Assessment Approaches Based on Life Cycles," Sustainability, MDPI, Open Access Journal, vol. 11(20), pages 1-43, October.
    3. Moins, B. & France, C. & Van den bergh, W. & Audenaert, A., 2020. "Implementing life cycle cost analysis in road engineering: A critical review on methodological framework choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Natalia Muñoz López & Jose Luis Santolaya Sáenz & Anna Biedermann & Ana Serrano Tierz, 2020. "Sustainability Assessment of Product–Service Systems Using Flows between Systems Approach," Sustainability, MDPI, Open Access Journal, vol. 12(8), pages 1-20, April.
    5. Shamraiz Ahmad & Kuan Yew Wong & Babar Zaman, 2019. "A Comprehensive and Integrated Stochastic-Fuzzy Method for Sustainability Assessment in the Malaysian Food Manufacturing Industry," Sustainability, MDPI, Open Access Journal, vol. 11(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Weiguo & Cao, Liu & Li, Qiu & Zhang, Wensheng & Wang, Guiming & Li, Chaochao, 2015. "Quantifying CO2 emissions from China’s cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1004-1012.
    2. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    3. Shen, Weiguo & Liu, Yi & Yan, Bilan & Wang, Jing & He, Pengtao & Zhou, Congcong & Huo, Xujia & Zhang, Wuzong & Xu, Gelong & Ding, Qingjun, 2017. "Cement industry of China: Driving force, environment impact and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 618-628.
    4. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Tae Hyoung Kim & Sung Ho Tae & Chang U. Chae & Won Young Choi, 2016. "The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea," Sustainability, MDPI, Open Access Journal, vol. 8(6), pages 1-19, May.
    6. Hurmekoski, Elias & Jonsson, Ragnar & Nord, Tomas, 2015. "Context, drivers, and future potential for wood-frame multi-story construction in Europe," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 181-196.
    7. Ä°rem Åžanal, 2018. "Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 366-378, April.
    8. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    9. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    10. repec:gam:jsusta:v:8:y:2016:i:4:p:361:d:68128 is not listed on IDEAS
    11. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    12. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    13. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    14. Tae Hyoung Kim & Chang U Chae & Gil Hwan Kim & Hyoung Jae Jang, 2016. "Analysis of CO 2 Emission Characteristics of Concrete Used at Construction Sites," Sustainability, MDPI, Open Access Journal, vol. 8(4), pages 1-14, April.
    15. Luo, Zongwei & Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Hazen, Benjamin & Roubaud, David, 2017. "Sustainable production framework for cement manufacturing firms: A behavioural perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 495-502.
    16. Shen, Lei & Gao, Tianming & Zhao, Jianan & Wang, Limao & Wang, Lan & Liu, Litao & Chen, Fengnan & Xue, Jingjing, 2014. "Factory-level measurements on CO2 emission factors of cement production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 337-349.
    17. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
    18. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    19. Nan Yu, 2016. ": Innovation of renewable energy generation technologies at a regional level in China:A study based on patent data analysis," EIIW Discussion paper disbei230, Universitätsbibliothek Wuppertal, University Library.
    20. repec:gam:jsusta:v:8:y:2016:i:4:p:348:d:67800 is not listed on IDEAS
    21. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, Open Access Journal, vol. 11(22), pages 1-18, November.
    22. Lukáš Fiala & Michaela Petříková & Wei-Ting Lin & Luboš Podolka & Robert Černý, 2019. "Self-Heating Ability of Geopolymers Enhanced by Carbon Black Admixtures at Different Voltage Loads," Energies, MDPI, Open Access Journal, vol. 12(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1162-1174. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.