IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i6p578-d72490.html
   My bibliography  Save this article

Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete

Author

Listed:
  • Tae Hyoung Kim

    (Building and Urban Research Institute, Korea Institute of Civil Engineering and Building Technology, Gyeonggi-Do 10223, Korea)

  • Chang U Chae

    (Building and Urban Research Institute, Korea Institute of Civil Engineering and Building Technology, Gyeonggi-Do 10223, Korea)

Abstract

Concrete is a major material used in the construction industry that emits a large amount of substances with environmental impacts during its life cycle. Accordingly, technologies for the reduction in and assessment of the environmental impact of concrete from the perspective of a life cycle assessment (LCA) must be developed. At present, the studies on LCA in relation to greenhouse gas emission from concrete are being carried out globally as a countermeasure against climate change. However, the studies on the impact of the substances emitted in the concrete production process on acidification and eutrophication are insufficient. As such, assessing only a single category of environmental impact may cause a misunderstanding about the environmental friendliness of concrete. The substances emitted in the concrete production process have an impact not only on global warming but also on acidification and eutrophication. Acidification and eutrophication are the main causes of air pollution, forest destruction, red tide phenomena, and deterioration of reinforced concrete structures. For this reason, the main substances among those emitted in the concrete production process that have an impact on acidification and eutrophication were deduced. In addition, an LCA technique through which to determine the major emissions from concrete was proposed and a case analysis was carried out. The substances among those emitted in the concrete production process that are related to eutrophication were deduced to be NO x , NH 3 , NH 4 + , COD, NO 3 − , and PO 4 3− . The substances among those emitted in the concrete production process that are related to acidification, were found to be NO x , SO 2 , H 2 S, and H 2 SO 4 . The materials and energy sources among those input into the concrete production process, which have the biggest impact on acidification and eutrophication, were found to be coarse aggregate and fine aggregate.

Suggested Citation

  • Tae Hyoung Kim & Chang U Chae, 2016. "Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:578-:d:72490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/6/578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/6/578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Junghoon & Tae, Sungho & Kim, Taehyung, 2012. "Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2940-2946.
    2. Kim, Taehyoung & Tae, Sungho & Roh, Seungjun, 2013. "Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 729-741.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elif Oğuz & Ayşe Eylül Şentürk, 2019. "Selection of the Most Sustainable Renewable Energy System for Bozcaada Island: Wind vs. Photovoltaic," Sustainability, MDPI, vol. 11(15), pages 1-33, July.
    2. Jin Wei & Xiaonan Ji & Wei Hu, 2022. "Characteristics of Phytoplankton Production in Wet and Dry Seasons in Hyper-Eutrophic Lake Taihu, China," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    3. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland," Energy, Elsevier, vol. 197(C).
    4. Ivan Merino & Israel Herrera & Hugo Valdés, 2019. "Environmental Assessment of Energy Scenarios for a Low-Carbon Electrical Network in Chile," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    5. Ming Hu, 2020. "A Building Life-Cycle Embodied Performance Index—The Relationship between Embodied Energy, Embodied Carbon and Environmental Impact," Energies, MDPI, vol. 13(8), pages 1-17, April.
    6. Modeste Kameni Nematchoua, 2022. "Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries," J, MDPI, vol. 5(1), pages 1-16, March.
    7. Daming Luo & Yan Wang & Shaohui Zhang & Ditao Niu, 2020. "Application of Fuzzy and Rough Sets to Environmental Zonation for Concrete Durability: A Case Study of Shaanxi Province, China," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    8. Lucas A. C. Esteves & Alessandra N. T. R. Monteiro & Natália Y. Sitanaka & Paula C. Oliveira & Leandro D. Castilha & Vinicius R. C. Paula & Paulo C. Pozza, 2021. "The Reduction of Crude Protein with the Supplementation of Amino Acids in the Diet Reduces the Environmental Impact of Growing Pigs Production Evaluated through Life Cycle Assessment," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    9. Haneen Abuzaid & Fatin Samara, 2022. "Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates," Energies, MDPI, vol. 15(22), pages 1-27, November.
    10. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    11. Daniel Wałach, 2020. "Analysis of Factors Affecting the Environmental Impact of Concrete Structures," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    12. Cyril Anak John & Lian See Tan & Jully Tan & Peck Loo Kiew & Azmi Mohd Shariff & Hairul Nazirah Abdul Halim, 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    13. Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.
    14. Žigart, Maja & Kovačič Lukman, Rebeka & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Environmental impact assessment of building envelope components for low-rise buildings," Energy, Elsevier, vol. 163(C), pages 501-512.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae Hyoung Kim & Chang U Chae & Gil Hwan Kim & Hyoung Jae Jang, 2016. "Analysis of CO 2 Emission Characteristics of Concrete Used at Construction Sites," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    2. Seungjun Roh & Sungho Tae, 2016. "Building Simplified Life Cycle CO 2 Emissions Assessment Tool (B‐SCAT) to Support Low‐Carbon Building Design in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    3. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    4. Xiao-Yong Wang, 2019. "Effect of Carbon Pricing on Optimal Mix Design of Sustainable High-Strength Concrete," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    5. Wang, JingJing & Wang, YuanFeng & Sun, YiWen & Tingley, Danielle Densley & Zhang, YuRong, 2017. "Life cycle sustainability assessment of fly ash concrete structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1162-1174.
    6. Tae Hyoung Kim & Sung Ho Tae & Chang U. Chae & Won Young Choi, 2016. "The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-19, May.
    7. Anne Ventura & Van‐Loc Ta & Tristan Senga Kiessé & Stéphanie Bonnet, 2021. "Design of concrete : Setting a new basis for improving both durability and environmental performance," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 233-247, February.
    8. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    9. Seunghyun Son & Dongjoo Lee & Jinhyuk Oh & Sunkuk Kim, 2021. "Embodied CO 2 Reduction Effects of Free-Form Concrete Panel Production Using Rod-Type Molds with 3D Plastering Technique," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    10. Tae Hyoung Kim & Sung Ho Tae & Sung Joon Suk & George Ford & Keun Hyek Yang, 2016. "An Optimization System for Concrete Life Cycle Cost and Related CO 2 Emissions," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    11. Seunguk Na & Inkwan Paik, 2019. "Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    12. Seungjun Roh & Sungho Tae & Rakhyun Kim & Daniela M. Martínez, 2018. "Analysis of Worker Category Social Impacts in Different Types of Concrete Plant Operations: A Case Study in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    13. Jozef Švajlenka & Mária Kozlovská, 2020. "Analysis of the Energy Balance of Constructions Based on Wood during Their Use in Connection with CO 2 Emissions," Energies, MDPI, vol. 13(18), pages 1-16, September.
    14. Ä°rem Åžanal, 2018. "Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 366-378, April.
    15. Taehyoung Kim & Chang U. Chae, 2016. "Evaluation Analysis of the CO 2 Emission and Absorption Life Cycle for Precast Concrete in Korea," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    16. Wijayasundara, Mayuri & Mendis, Priyan & Zhang, Lihai & Sofi, Massoud, 2016. "Financial assessment of manufacturing recycled aggregate concrete in ready-mix concrete plants," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 187-201.
    17. Inkwan Paik & Seunguk Na, 2019. "Comparison of Carbon Dioxide Emissions of the Ordinary Reinforced Concrete Slab and the Voided Slab System During the Construction Phase: A Case Study of a Residential Building in South Korea," Sustainability, MDPI, vol. 11(13), pages 1-16, June.
    18. Xiaoqian Cen & Qingyuan Wang & Xiaoshuang Shi & Yan Su & Jingsi Qiu, 2019. "Optimization of Concrete Mixture Design Using Adaptive Surrogate Model," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    19. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    20. Han-Seung Lee & Xiao-Yong Wang, 2016. "Evaluation of the Carbon Dioxide Uptake of Slag-Blended Concrete Structures, Considering the Effect of Carbonation," Sustainability, MDPI, vol. 8(4), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:578-:d:72490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.