IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p663-d73872.html
   My bibliography  Save this article

Evaluation Analysis of the CO 2 Emission and Absorption Life Cycle for Precast Concrete in Korea

Author

Listed:
  • Taehyoung Kim

    (Building and Urban Research Institute, Korea Institute of Civil Engineering and Building Technology, Goyang-Si, Gyeonggi-Do 10223, Korea)

  • Chang U. Chae

    (Building and Urban Research Institute, Korea Institute of Civil Engineering and Building Technology, Goyang-Si, Gyeonggi-Do 10223, Korea)

Abstract

To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG) emission reduction target of 37% (851 million tons) of the business as usual (BAU) rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code), there are also rising demands for the assessment on CO 2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard) 14040. At present, precast concrete (PC) engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO 2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO 2 emissions (including absorption) throughout the PC life cycle by using a life cycle assessment (LCA) method. Using the proposed assessment method, CO 2 emissions during the life cycle of a precast concrete girder (PCG) were assessed. In addition, CO 2 absorption was assessed against a PCG using conventional carbonation and CO 2 absorption-related models. As a result, the CO 2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO 2 /1 PCG). The CO 2 emissions during the production of raw materials among the CO 2 emissions throughout the life cycle of the PCG were 1390 (kg-CO 2 /1 PCG), accounting for a high portion to total CO 2 emissions (nearly 90%). In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO 2 emissions. Among the use of the PCG, CO 2 absorption was mostly decided by the CO 2 diffusion coefficient and the amount of CO 2 absorption by cement paste. The CO 2 absorption by carbonation throughout the service life of the PC was about 11% of the total CO 2 emissions, which is about 16% of CO 2 emissions from ordinary Portland cement (OPC) concrete.

Suggested Citation

  • Taehyoung Kim & Chang U. Chae, 2016. "Evaluation Analysis of the CO 2 Emission and Absorption Life Cycle for Precast Concrete in Korea," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:663-:d:73872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    2. Kim, Taehyoung & Tae, Sungho & Roh, Seungjun, 2013. "Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 729-741.
    3. Lee, Kanghee & Tae, Sungho & Shin, Sungwoo, 2009. "Development of a Life Cycle Assessment Program for building (SUSB-LCA) in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1994-2002, October.
    4. Han-Seung Lee & Xiao-Yong Wang, 2016. "Evaluation of the Carbon Dioxide Uptake of Slag-Blended Concrete Structures, Considering the Effect of Carbonation," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Taehoon & Jeong, Kwangbok & Koo, Choongwan, 2018. "An optimized gene expression programming model for forecasting the national CO2 emissions in 2030 using the metaheuristic algorithms," Applied Energy, Elsevier, vol. 228(C), pages 808-820.
    2. Ä°rem Åžanal, 2018. "Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 366-378, April.
    3. Joowook Kim & Jemin Myoung & Hyunwoo Lim & Doosam Song, 2020. "Efficiency Gap Caused by the Input Data in Evaluating Energy Efficiency of Low-Income Households’ Energy Retrofit Program," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
    4. Jeeyoung Lim & Joseph J. Kim, 2020. "Dynamic Optimization Model for Estimating In-Situ Production Quantity of PC Members to Minimize Environmental Loads," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    5. Tomasz Rudnicki, 2022. "The Impact of the Aggregate Used on the Possibility of Reducing the Carbon Footprint in Pavement Concrete," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    6. Golden Odey & Bashir Adelodun & Sang-Hyun Kim & Kyung-Sook Choi, 2021. "Status of Environmental Life Cycle Assessment (LCA): A Case Study of South Korea," Sustainability, MDPI, vol. 13(11), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    2. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    3. Seungjun Roh & Sungho Tae, 2016. "Building Simplified Life Cycle CO 2 Emissions Assessment Tool (B‐SCAT) to Support Low‐Carbon Building Design in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    4. Lee, Nayoon & Tae, Sungho & Gong, Yuri & Roh, Seungjun, 2017. "Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 43-50.
    5. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    6. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    7. Cheonghoon Baek & Sungho Tae & Rakhyun Kim & Sungwoo Shin, 2016. "Life Cycle CO 2 Assessment by Block Type Changes of Apartment Housing," Sustainability, MDPI, vol. 8(8), pages 1-14, August.
    8. Shad, Rouzbeh & Khorrami, Mohammad & Ghaemi, Marjan, 2017. "Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 324-340.
    9. Roh, Seungjun & Tae, Sungho & Shin, Sungwoo, 2014. "Development of building materials embodied greenhouse gases assessment criteria and system (BEGAS) in the newly revised Korea Green Building Certification System (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 410-421.
    10. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    11. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    12. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    13. Dzikuć Maciej, 2015. "Environmental management with the use of LCA in the Polish energy system," Management, Sciendo, vol. 19(1), pages 89-97, May.
    14. Qianqian Zhao & Junzhen Li & Roman Fediuk & Sergey Klyuev & Darya Nemova, 2021. "Benefit Evaluation Model of Prefabricated Buildings in Seasonally Frozen Regions," Energies, MDPI, vol. 14(21), pages 1-18, November.
    15. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    16. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    17. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    19. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    20. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:663-:d:73872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.