IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i8p1994-2002.html
   My bibliography  Save this article

Development of a Life Cycle Assessment Program for building (SUSB-LCA) in South Korea

Author

Listed:
  • Lee, Kanghee
  • Tae, Sungho
  • Shin, Sungwoo

Abstract

Our environment is an important resource, not only for use in development, but to conserve. In the 1990s, the importance of our environment became underscored for conservation efforts in many areas. Among them, the building construction industry had played a role in impoverishing the environment, for the sake of improving our quality of life, but at a great cost of impact to the environment. It is therefore incumbent upon the industry to endeavor to mitigate effects from building constructions to our environment. During the life cycle of a building, it consumes energy and other natural resources. But it is difficult to evaluate their effects on the environment during the entire course of a building's life span, without much time and effort. An easy to handle program is necessary for the calculation of effects to the environment during the life cycle of a building. Many of the software programs developed for these kinds of assessments can only be used with significant restrictions because of their differences in design for scope and content. This paper presents foundations for the development of a Life Cycle Assessment (LCA) program for buildings, focusing on their energy consumption and carbon dioxide emission levels, with a comparison of domestically and foreign designed programs.

Suggested Citation

  • Lee, Kanghee & Tae, Sungho & Shin, Sungwoo, 2009. "Development of a Life Cycle Assessment Program for building (SUSB-LCA) in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1994-2002, October.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1994-2002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00003-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandra Urie & Suzan Dagg, 2004. "Development Of A Life Cycle Assessment (Lca) Based Decision-Making Tool For The Assessment Of Building Products," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 153-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tae Hyoung Kim & Sung Ho Tae, 2016. "Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment)," IJERPH, MDPI, vol. 13(11), pages 1-16, November.
    2. Park, Junghoon & Tae, Sungho & Kim, Taehyung, 2012. "Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2940-2946.
    3. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    4. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    5. Golden Odey & Bashir Adelodun & Sang-Hyun Kim & Kyung-Sook Choi, 2021. "Status of Environmental Life Cycle Assessment (LCA): A Case Study of South Korea," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    6. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    7. Shad, Rouzbeh & Khorrami, Mohammad & Ghaemi, Marjan, 2017. "Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 324-340.
    8. Hong, Taehoon & Koo, Choongwan & Lee, Sungug, 2014. "Benchmarks as a tool for free allocation through comparison with similar projects: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 114(C), pages 663-675.
    9. Cheonghoon Baek & Sungho Tae & Rakhyun Kim & Sungwoo Shin, 2016. "Life Cycle CO 2 Assessment by Block Type Changes of Apartment Housing," Sustainability, MDPI, vol. 8(8), pages 1-14, August.
    10. Morrissey, J. & Meyrick, B. & Sivaraman, D. & Horne, R.E. & Berry, M., 2013. "Cost-benefit assessment of energy efficiency investments: Accounting for future resources, savings and risks in the Australian residential sector," Energy Policy, Elsevier, vol. 54(C), pages 148-159.
    11. Tae, Sungho & Shin, Sungwoo & Woo, Jeehwan & Roh, Seungjun, 2011. "The development of apartment house life cycle CO2 simple assessment system using standard apartment houses of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1454-1467, April.
    12. Seungjun Roh & Sungho Tae, 2016. "Building Simplified Life Cycle CO 2 Emissions Assessment Tool (B‐SCAT) to Support Low‐Carbon Building Design in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    13. Ferreira, Joaquim & Pinheiro, Manuel Duarte & Brito, Jorge de, 2013. "Refurbishment decision support tools review—Energy and life cycle as key aspects to sustainable refurbishment projects," Energy Policy, Elsevier, vol. 62(C), pages 1453-1460.
    14. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    15. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.
    16. Taehyoung Kim & Chang U. Chae, 2016. "Evaluation Analysis of the CO 2 Emission and Absorption Life Cycle for Precast Concrete in Korea," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    17. Shi, Qian & Lai, Xiaodong & Xie, Xin & Zuo, Jian, 2014. "Assessment of green building policies – A fuzzy impact matrix approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 203-211.
    18. Roh, Seungjun & Tae, Sungho & Shin, Sungwoo, 2014. "Development of building materials embodied greenhouse gases assessment criteria and system (BEGAS) in the newly revised Korea Green Building Certification System (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 410-421.
    19. Lee, Nayoon & Tae, Sungho & Gong, Yuri & Roh, Seungjun, 2017. "Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 43-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae, Sungho & Shin, Sungwoo, 2009. "Current work and future trends for sustainable buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1910-1921, October.

    More about this item

    Keywords

    SUSB-LCA Life Cycle Assessment Energy CO2;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1994-2002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.