IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8765-d979717.html
   My bibliography  Save this article

Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates

Author

Listed:
  • Haneen Abuzaid

    (Department of Industrial Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Fatin Samara

    (Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

Abstract

The shift toward renewable energy resources, and photovoltaic systems specifically, has gained a huge focus in the past two decades. This study aimed to assess several environmental and economic impacts of a photovoltaic system that installed on the rooftop of an industrial facility in Dubai, United Arab Emirates (UAE). The life cycle assessment method was employed to study all the flows and evaluate the environmental impacts, while several economic indicators were calculated to assess the feasibility and profitability of this photovoltaic system. The results showed that the production processes contributed the most to the environmental impacts, where the total primary energy demand was 1152 MWh for the whole photovoltaic system, the total global warming potential was 6.83 × 10 –2 kg CO 2 -eq, the energy payback time was 2.15 years, the carbon dioxide payback time was 1.87 years, the acidification potential was 2.87 × 10 –4 kg SO 2 -eq, eutrophication potential was 2.45 × 10 –5 kg PO 4 3 -eq, the ozone layer depletion potential was 4.685 × 10 –9 kgCFC-11-eq, the photochemical ozone creation potential was 3.81 × 10 –5 kg C 2 H 4 -eq, and the human toxicity potential was 2.38 × 10 –2 kg1,4-DB-eq for the defined function unit of the photovoltaic system, while the economic impact indicators for the whole system resulted in a 3.5 year payback period, the benefit to cost ratio of 11.8, and 0.142 AED/kWh levelized cost of electricity. This was the first study to comprehensively consider all of these impact indicators together. These findings are beneficial inputs for policy- and decision-makers, photovoltaic panel manufacturers, and photovoltaic contractors to enhance the sustainability of their processes and improve the environment.

Suggested Citation

  • Haneen Abuzaid & Fatin Samara, 2022. "Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates," Energies, MDPI, vol. 15(22), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8765-:d:979717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    2. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    3. Lu, L. & Yang, H.X., 2010. "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong," Applied Energy, Elsevier, vol. 87(12), pages 3625-3631, December.
    4. Ryan, Lisa & Dillon, Joseph & Monaca, Sarah La & Byrne, Julie & O'Malley, Mark, 2016. "Assessing the system and investor value of utility-scale solar PV," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 506-517.
    5. Krauter, S & Rüther, R, 2004. "Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy," Renewable Energy, Elsevier, vol. 29(3), pages 345-355.
    6. Rigter, Jasper & Vidican, Georgeta, 2010. "Cost and optimal feed-in tariff for small scale photovoltaic systems in China," Energy Policy, Elsevier, vol. 38(11), pages 6989-7000, November.
    7. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    8. Reichelstein, Stefan & Yorston, Michael, 2013. "The prospects for cost competitive solar PV power," Energy Policy, Elsevier, vol. 55(C), pages 117-127.
    9. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    10. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    11. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    12. C. Harmon, 2000. "Experience Curves of Photovoltaic Technology," Working Papers ir00014, International Institute for Applied Systems Analysis.
    13. Tae Hyoung Kim & Chang U Chae, 2016. "Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    14. Zhang, Da & Tang, Songlin & Lin, Bao & Liu, Zhen & Zhang, Xiliang & Zhang, Danwei, 2012. "Co-benefit of polycrystalline large-scale photovoltaic power in China," Energy, Elsevier, vol. 41(1), pages 436-442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mladen Bošnjaković & Robert Santa & Zoran Crnac & Tomislav Bošnjaković, 2023. "Environmental Impact of PV Power Systems," Sustainability, MDPI, vol. 15(15), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Jiahai & Sun, Shenghui & Zhang, Wenhua & Xiong, Minpeng, 2014. "The economy of distributed PV in China," Energy, Elsevier, vol. 78(C), pages 939-949.
    2. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    3. Burtt, D. & Dargusch, P., 2015. "The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions," Applied Energy, Elsevier, vol. 148(C), pages 439-448.
    4. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    5. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    6. Spiros Papaefthimiou, Manolis Souliotis, and Kostas Andriosopoulos, 2016. "Grid parity of solar energy: imminent fact or future's fiction," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    7. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    8. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    9. La Monaca, Sarah & Ryan, Lisa, 2017. "Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling," Energy Policy, Elsevier, vol. 108(C), pages 731-741.
    10. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    11. Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
    12. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    13. Dobrotkova, Zuzana & Surana, Kavita & Audinet, Pierre, 2018. "The price of solar energy: Comparing competitive auctions for utility-scale solar PV in developing countries," Energy Policy, Elsevier, vol. 118(C), pages 133-148.
    14. Bistline, John E. & Comello, Stephen D. & Sahoo, Anshuman, 2018. "Managerial flexibility in levelized cost measures: A framework for incorporating uncertainty in energy investment decisions," Energy, Elsevier, vol. 151(C), pages 211-225.
    15. Tomosk, Steve & Haysom, Joan E. & Wright, David, 2017. "Quantifying economic risk in photovoltaic power projects," Renewable Energy, Elsevier, vol. 109(C), pages 422-433.
    16. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    17. Tu, Qiang & Mo, Jianlei & Betz, Regina & Cui, Lianbiao & Fan, Ying & Liu, Yu, 2020. "Achieving grid parity of solar PV power in China- The role of Tradable Green Certificate," Energy Policy, Elsevier, vol. 144(C).
    18. Ouedraogo, Bachir I. & Kouame, S. & Azoumah, Y. & Yamegueu, D., 2015. "Incentives for rural off grid electrification in Burkina Faso using LCOE," Renewable Energy, Elsevier, vol. 78(C), pages 573-582.
    19. Foteinis, Spyros & Savvakis, Nikolaos & Tsoutsos, Theocharis, 2023. "Energy and environmental performance of photovoltaic cooling using phase change materials under the Mediterranean climate," Energy, Elsevier, vol. 265(C).
    20. Wadhawan, Siddharth R. & Pearce, Joshua M., 2017. "Power and energy potential of mass-scale photovoltaic noise barrier deployment: A case study for the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 125-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8765-:d:979717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.