IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp825-839.html
   My bibliography  Save this article

Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector

Author

Listed:
  • Sanchez, Nestor
  • Ruiz, Ruth
  • Rödl, Anne
  • Cobo, Martha

Abstract

Decarbonization of energy by using renewable sources is a global need to tackle climate change. Herein, we report on the techno-environmental analysis of the use of sugarcane press-mud, a residual biomass, as feedstock to produce power in a fuel cell by using hydrogen (H2) as energy vector. Technical analysis was performed by using experimental and Aspen plus simulation results whereas environmental analysis was assessed through life cycle assessment. Raw bioethanol was used as H2 source, which was purified by three different technologies, i.e., flash, mash, and rectification columns. Mash column was selected as the suitable process to purify bioethanol for producing H2 and power, mainly ascribed to the reduction of bioethanol impurities that increases H2 yield, reduces energy demand, and mitigates the environmental impact in terms of global warming potential and acidification potential. This technology presented an energy efficiency of 56 %, a renewability factor of 1.24 and a carbon footprint of 1.21 kg CO2 kWh−1. Additionally, the use of residual biomass showed environmental benefits in comparison with the use of first-generation bioethanol from sugarcane molasses. Therefore, using sugarcane press-mud as power source in rural areas can diversify the energy sources to move towards a decarbonized economy.

Suggested Citation

  • Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:825-839
    DOI: 10.1016/j.renene.2021.04.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rizk, J. & Nemer, M. & Clodic, D., 2012. "A real column design exergy optimization of a cryogenic air separation unit," Energy, Elsevier, vol. 37(1), pages 417-429.
    2. Valencia, Monica J. & Cardona, Carlos A., 2014. "The Colombian biofuel supply chains: The assessment of current and promising scenarios based on environmental goals," Energy Policy, Elsevier, vol. 67(C), pages 232-242.
    3. Lopes, Daniel G. & da Silva, E.P. & Pinto, C.S. & Neves, N.P. & Camargo, J.C. & Ferreira, P.F.P. & Furlan, A.L. & Lopes, Davi G., 2012. "Technical and economic analysis of a power supply system based on ethanol reforming and PEMFC," Renewable Energy, Elsevier, vol. 45(C), pages 205-212.
    4. Dan, Monica & Senila, Lacrimioara & Roman, Marius & Mihet, Maria & Lazar, Mihaela D., 2015. "From wood wastes to hydrogen – Preparation and catalytic steam reforming of crude bio-ethanol obtained from fir wood," Renewable Energy, Elsevier, vol. 74(C), pages 27-36.
    5. Tae Hyoung Kim & Chang U Chae, 2016. "Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    6. Buchspies, Benedikt & Kaltschmitt, Martin, 2018. "A consequential assessment of changes in greenhouse gas emissions due to the introduction of wheat straw ethanol in the context of European legislation," Applied Energy, Elsevier, vol. 211(C), pages 368-381.
    7. Iulianelli, Adolfo & Palma, Vincenzo & Bagnato, Giuseppe & Ruocco, Concetta & Huang, Yan & Veziroğlu, Nejat T. & Basile, Angelo, 2018. "From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor," Renewable Energy, Elsevier, vol. 119(C), pages 834-843.
    8. Lin, Haiyang & Wu, Qiuwei & Chen, Xinyu & Yang, Xi & Guo, Xinyang & Lv, Jiajun & Lu, Tianguang & Song, Shaojie & McElroy, Michael, 2021. "Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China," Renewable Energy, Elsevier, vol. 173(C), pages 569-580.
    9. Fukushima, Nilton Asao & Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2019. "Energy analysis of the ethanol industry considering vinasse concentration and incineration," Renewable Energy, Elsevier, vol. 142(C), pages 96-109.
    10. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    11. Moon, Dong-Kyu & Lee, Dong-Geun & Lee, Chang-Ha, 2016. "H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process," Applied Energy, Elsevier, vol. 183(C), pages 760-774.
    12. Dimitrova, Zlatina & Maréchal, François, 2017. "Environomic design for electric vehicles with an integrated solid oxide fuel cell (SOFC) unit as a range extender," Renewable Energy, Elsevier, vol. 112(C), pages 124-142.
    13. Quintero, Julián A. & Cardona, Carlos A. & Felix, Erika & Moncada, Jonathan & Sánchez, Óscar J. & Gutiérrez, Luis F., 2012. "Techno-economic analysis of bioethanol production in Africa: Tanzania case," Energy, Elsevier, vol. 48(1), pages 442-454.
    14. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    15. Mohammadi, Fateme & Roedl, Anne & Abdoli, Mohammad Ali & Amidpour, Majid & Vahidi, Hossein, 2020. "Life cycle assessment (LCA) of the energetic use of bagasse in Iranian sugar industry," Renewable Energy, Elsevier, vol. 145(C), pages 1870-1882.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nestor Sanchez & David Rodríguez-Fontalvo & Bernay Cifuentes & Nelly M. Cantillo & Miguel Ángel Uribe Laverde & Martha Cobo, 2021. "Biomass Potential for Producing Power via Green Hydrogen," Energies, MDPI, vol. 14(24), pages 1-18, December.
    2. Sara Domínguez & Bernay Cifuentes & Felipe Bustamante & Nelly M. Cantillo & César L. Barraza-Botet & Martha Cobo, 2022. "On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    3. Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palma, Vincenzo & Ruocco, Concetta & Ricca, Antonio, 2018. "Oxidative steam reforming of ethanol in a fluidized bed over CeO2-SiO2 supported catalysts: effect of catalytic formulation," Renewable Energy, Elsevier, vol. 125(C), pages 356-364.
    2. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    5. James Thurlow & Giacomo Branca & Erika Felix & Irini Maltsoglou & Luis E. Rincón, 2016. "Producing Biofuels in Low-Income Countries: An Integrated Environmental and Economic Assessment for Tanzania," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 153-171, June.
    6. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    7. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    8. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    9. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    10. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    11. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    12. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    13. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    14. Iosifov Valeriy Victorovich & Evgenii Yu. Khrustalev & Sergey N. Larin & Oleg E. Khrustalev, 2021. "The Linear Programming Problem of Regional Energy System Optimization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 281-288.
    15. Haneen Abuzaid & Fatin Samara, 2022. "Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates," Energies, MDPI, vol. 15(22), pages 1-27, November.
    16. Franziska Schuenemann & William A. Kerr, 2019. "European Union non-tariff barriers to imports of African biofuels," Agrekon, Taylor & Francis Journals, vol. 58(4), pages 407-425, October.
    17. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    18. Daming Luo & Yan Wang & Shaohui Zhang & Ditao Niu, 2020. "Application of Fuzzy and Rough Sets to Environmental Zonation for Concrete Durability: A Case Study of Shaanxi Province, China," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    19. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    20. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:825-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.