IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11436-d913049.html
   My bibliography  Save this article

On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen

Author

Listed:
  • Sara Domínguez

    (Environmental Catalysis Laboratory, Chemical Engineering Department, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Bernay Cifuentes

    (Chemical Engineering Program, Faculty of Engineering, Universidad de La Salle, Carrera 2 No. 10-70, Bogotá 11001, Colombia)

  • Felipe Bustamante

    (Environmental Catalysis Laboratory, Chemical Engineering Department, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Nelly M. Cantillo

    (Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá 250001, Colombia)

  • César L. Barraza-Botet

    (Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá 250001, Colombia)

  • Martha Cobo

    (Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá 250001, Colombia)

Abstract

Latin America is starting its energy transition. In Colombia, with its abundant natural resources and fossil fuel reserves, hydrogen (H 2 ) could play a key role. This contribution analyzes the potential of blue H 2 production in Colombia as a possible driver of the H 2 economy. The study assesses the natural resources available to produce blue H 2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H 2 production in Colombia using coal as feedstock. Such potential, besides allowing a more sustainable use of non-renewable resources, would pave the way for green H 2 deployment in Colombia. Blue H 2 production from coal could range from 700 to 8000 kt H 2 /year by 2050 under conservative and ambitious scenarios, respectively, which could supply up to 1.5% of the global H 2 demand by 2050. However, while feedstock availability is promising for blue H 2 production, carbon dioxide (CO 2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed, results of this work indicate that capture capacities of 15 to 180 Mt CO 2 /year (conservative and ambitious scenarios) need to be developed by 2050, and that the required investment for H 2 deployment would be above that initially envisioned by the government. Further studies on carbon capture, utilization and storage capacity, implementation of a clear public policy, and a more detailed hydrogen strategy for the inclusion of blue H 2 in the energy mix are required for establishing a low-emission H 2 economy in the country.

Suggested Citation

  • Sara Domínguez & Bernay Cifuentes & Felipe Bustamante & Nelly M. Cantillo & César L. Barraza-Botet & Martha Cobo, 2022. "On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11436-:d:913049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Guoxuan & Cui, Peizhe & Wang, Yinglong & Liu, Zhiqiang & Zhu, Zhaoyou & Yang, Sheng, 2020. "Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process," Energy, Elsevier, vol. 191(C).
    2. Nestor Sanchez & David Rodríguez-Fontalvo & Bernay Cifuentes & Nelly M. Cantillo & Miguel Ángel Uribe Laverde & Martha Cobo, 2021. "Biomass Potential for Producing Power via Green Hydrogen," Energies, MDPI, vol. 14(24), pages 1-18, December.
    3. Washburn, C. & Pablo-Romero, M., 2019. "Measures to promote renewable energies for electricity generation in Latin American countries," Energy Policy, Elsevier, vol. 128(C), pages 212-222.
    4. García, Carlos A. & Morales, Marjorie & Quintero, Julian & Aroca, Germán & Cardona, Carlos A., 2017. "Environmental assessment of hydrogen production based on Pinus patula plantations in Colombia," Energy, Elsevier, vol. 139(C), pages 606-616.
    5. Viviescas, Cindy & Lima, Lucas & Diuana, Fabio A. & Vasquez, Eveline & Ludovique, Camila & Silva, Gabriela N. & Huback, Vanessa & Magalar, Leticia & Szklo, Alexandre & Lucena, André F.P. & Schaeffer, , 2019. "Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    7. Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Engy Raouf, 2023. "Green Hydrogen Production and Public Health Expenditure in Hydrogen-Exporting Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 36-44, November.
    2. Shamal Chandra Karmaker & Andrew Chapman & Kanchan Kumar Sen & Shahadat Hosan & Bidyut Baran Saha, 2022. "Renewable Energy Pathways toward Accelerating Hydrogen Fuel Production: Evidence from Global Hydrogen Modeling," Sustainability, MDPI, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Nuno & Fuinhas, José Alberto & Koengkan, Matheus, 2021. "Assessing the advancement of new renewable energy sources in Latin American and Caribbean countries," Energy, Elsevier, vol. 237(C).
    2. Ottonelli, Janaina & Lazaro, Lira Luz Benites & Andrade, José Célio Silveira & Abram, Simone, 2023. "Do solar photovoltaic clean development mechanism projects contribute to sustainable development in Latin America? Prospects for the Paris Agreement," Energy Policy, Elsevier, vol. 174(C).
    3. -, 2023. "Foreign Direct Investment in Latin America and the Caribbean 2023," La Inversión Extranjera Directa en América Latina y el Caribe, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 48979 edited by Eclac.
    4. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    5. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    6. Yin, Kexin & Wei, Ranran & Ruan, Jiuxu & Cui, Peizhe & Zhu, Zhaoyou & Wang, Yinglong & Zhao, Xinling, 2023. "Life cycle assessment and life cycle cost analysis of surgical mask from production to recycling into hydrogen process," Energy, Elsevier, vol. 283(C).
    7. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    8. Baxter L. M. Williams & R. J. Hooper & Daniel Gnoth & J. G. Chase, 2025. "Residential Electricity Demand Modelling: Validation of a Behavioural Agent-Based Approach," Energies, MDPI, vol. 18(6), pages 1-22, March.
    9. Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).
    10. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    11. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Store-on grid scheme model for grid-tied solar photovoltaic systems for industrial sector application: Benefits analysis," Renewable Energy, Elsevier, vol. 171(C), pages 1257-1275.
    12. Wijayasekera, Sachindra Chamode & Hewage, Kasun & Hettiaratchi, Patrick & Razi, Faran & Sadiq, Rehan, 2023. "Planning and development of waste-to-hydrogen conversion facilities: A parametric analysis," Energy, Elsevier, vol. 278(PA).
    13. Barroco, Jose & Herrera, Maria, 2019. "Clearing barriers to project finance for renewable energy in developing countries: A Philippines case study," Energy Policy, Elsevier, vol. 135(C).
    14. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    15. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Ardolino, Filomena & Lodato, Concetta & Astrup, Thomas F. & Arena, Umberto, 2018. "Energy recovery from plastic and biomass waste by means of fluidized bed gasification: A life cycle inventory model," Energy, Elsevier, vol. 165(PB), pages 299-314.
    17. Bae, Dasol & Kim, Yikyeom & Ko, Eun Hee & Ju Han, Seung & Lee, Jae W. & Kim, Minkyu & Kang, Dohyung, 2023. "Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures," Applied Energy, Elsevier, vol. 336(C).
    18. Opeyemi, Akinyemi & Uchenna, Efobi & Simplice, Asongu & Evans, Osabuohein, 2019. "Renewable energy, trade performance and the conditional role of finance and institutional capacity in sub-Sahara African countries," Energy Policy, Elsevier, vol. 132(C), pages 490-498.
    19. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    20. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11436-:d:913049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.