IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8862-d982447.html
   My bibliography  Save this article

Green and Blue Hydrogen Production: An Overview in Colombia

Author

Listed:
  • Sebastián Mantilla

    (Laboratory for Physics of Materials and Emerging Technologies, Center of Physics and Engineering of Advanced Materials, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • Diogo M. F. Santos

    (Laboratory for Physics of Materials and Emerging Technologies, Center of Physics and Engineering of Advanced Materials, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

Abstract

Colombia, a privileged country in terms of diversity, availability of natural resources, and geographical location, has set a roadmap for hydrogen as part of the energy transition plan proposed in 2021. To reduce its emissions in the mid-term and foster its economy, hydrogen production should be green and blue, with specific targets set for 2030 for the hydrogen costs and produced quantities. This work compares the state-of-the-art production of blue and green hydrogen and how Colombia is doing in each pathway. A deeper analysis considers the advantages of Colombia’s natural resources, the possible paths the government could follow, and the feedstock’s geographical location for hydrogen production and transportation. Then, one discusses what may be the next steps in terms of policies and developments to succeed in implementing the plan. Overall, it is concluded that green hydrogen could be the faster, more sustainable, and more efficient method to implement in Colombia. However, blue hydrogen could play an essential role if oil and gas companies assess the advantages of carbon dioxide utilization and promote its deployment.

Suggested Citation

  • Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8862-:d:982447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Sergii Bespalko & Jerzy Mizeraczyk, 2022. "Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis," Energies, MDPI, vol. 15(20), pages 1-40, October.
    3. David Jure Jovan & Gregor Dolanc, 2020. "Can Green Hydrogen Production Be Economically Viable under Current Market Conditions," Energies, MDPI, vol. 13(24), pages 1-16, December.
    4. Yáñez, Édgar & Meerman, Hans & Ramírez, Andrea & Castillo, Édgar & Faaij, Andre, 2022. "Fully integrated CO2 mitigation strategy for an existing refinery: A case study in Colombia," Applied Energy, Elsevier, vol. 313(C).
    5. Zuraya Angeles-Olvera & Alfonso Crespo-Yapur & Oliver Rodríguez & Jorge L. Cholula-Díaz & Luz María Martínez & Marcelo Videa, 2022. "Nickel-Based Electrocatalysts for Water Electrolysis," Energies, MDPI, vol. 15(5), pages 1-35, February.
    6. Nestor Sanchez & David Rodríguez-Fontalvo & Bernay Cifuentes & Nelly M. Cantillo & Miguel Ángel Uribe Laverde & Martha Cobo, 2021. "Biomass Potential for Producing Power via Green Hydrogen," Energies, MDPI, vol. 14(24), pages 1-18, December.
    7. Iren A. Makaryan & Igor V. Sedov & Eugene A. Salgansky & Artem V. Arutyunov & Vladimir S. Arutyunov, 2022. "A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities," Energies, MDPI, vol. 15(6), pages 1-27, March.
    8. Lorién Gracia & Pedro Casero & Cyril Bourasseau & Alexandre Chabert, 2018. "Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment," Energies, MDPI, vol. 11(11), pages 1-16, November.
    9. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    10. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    11. George Mallouppas & Constantina Ioannou & Elias Ar. Yfantis, 2022. "A Review of the Latest Trends in the Use of Green Ammonia as an Energy Carrier in Maritime Industry," Energies, MDPI, vol. 15(4), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsiklios, C. & Hermesmann, M. & Müller, T.E., 2022. "Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergii Bespalko & Jerzy Mizeraczyk, 2022. "Energy Balance of Hydrogen Production in the Cathodic Regime of Plasma-Driven Solution Electrolysis of Na 2 CO 3 Aqueous Solution with Argon Carrier Gas," Energies, MDPI, vol. 15(24), pages 1-13, December.
    2. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    3. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    4. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    5. Sara Domínguez & Bernay Cifuentes & Felipe Bustamante & Nelly M. Cantillo & César L. Barraza-Botet & Martha Cobo, 2022. "On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    6. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    7. Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
    8. Amandeep Singh Oberoi & Parag Nijhawan & Parminder Singh, 2018. "A Novel Electrochemical Hydrogen Storage-Based Proton Battery for Renewable Energy Storage," Energies, MDPI, vol. 12(1), pages 1-15, December.
    9. Byoungjik Park & Yangkyun Kim & Kwanwoo Lee & Shinwon Paik & Chankyu Kang, 2021. "Risk Assessment Method Combining Independent Protection Layers (IPL) of Layer of Protection Analysis (LOPA) and RISKCURVES Software: Case Study of Hydrogen Refueling Stations in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-13, July.
    10. Nicolai Lystbæk & Mikkel Gregersen & Hamid Reza Shaker, 2023. "Review of Energy Portfolio Optimization in Energy Markets Considering Flexibility of Power-to-X," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    11. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. George Mallouppas & Elias Ar. Yfantis & Constantina Ioannou & Andreas Paradeisiotis & Angelos Ktoris, 2023. "Application of Biogas and Biomethane as Maritime Fuels: A Review of Research, Technology Development, Innovation Proposals, and Market Potentials," Energies, MDPI, vol. 16(4), pages 1-25, February.
    13. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Giovanni Esposito & Silvio Matassa & Stefano Papirio, 2022. "Biovalorization of Lignocellulosic Waste," Energies, MDPI, vol. 15(21), pages 1-3, November.
    15. Schmid, Fabian & Behrendt, Frank, 2023. "Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost," Energy, Elsevier, vol. 262(PA).
    16. Cristina Hora & Florin Ciprian Dan & Nicolae Rancov & Gabriela Elena Badea & Calin Secui, 2022. "Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review," Energies, MDPI, vol. 15(16), pages 1-21, August.
    17. Jarosław Gryz & Krzysztof Król & Anna Witkowska & Mariusz Ruszel, 2021. "Mobile Nuclear-Hydrogen Synergy in NATO Operations," Energies, MDPI, vol. 14(23), pages 1-12, November.
    18. Daniel Węcel & Michał Jurczyk & Wojciech Uchman & Anna Skorek-Osikowska, 2020. "Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator," Energies, MDPI, vol. 13(22), pages 1-19, November.
    19. Marcin Dębowski & Magda Dudek & Marcin Zieliński & Anna Nowicka & Joanna Kazimierowicz, 2021. "Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review," Energies, MDPI, vol. 14(19), pages 1-27, September.
    20. Meriläinen, Altti & Montonen, Jan-Henri & Hopsu, Jeremias & Kosonen, Antti & Lindh, Tuomo & Ahola, Jero, 2023. "Power balance control and dimensioning of a hybrid off-grid energy system for a Nordic climate townhouse," Renewable Energy, Elsevier, vol. 209(C), pages 310-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8862-:d:982447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.