IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3193-d565323.html
   My bibliography  Save this article

Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers

Author

Listed:
  • Ana L. Santos

    (TecnoVeritas—Serviços de Engenharia e Sistemas Tecnológicos, Lda, 2640-486 Mafra, Portugal
    Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • Maria-João Cebola

    (CBIOS—Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
    CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
    Escola Superior Náutica Infante D. Henrique, 2770-058 Paço de Arcos, Portugal)

  • Diogo M. F. Santos

    (Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

Abstract

Environmental issues make the quest for better and cleaner energy sources a priority. Worldwide, researchers and companies are continuously working on this matter, taking one of two approaches: either finding new energy sources or improving the efficiency of existing ones. Hydrogen is a well-known energy carrier due to its high energy content, but a somewhat elusive one for being a gas with low molecular weight. This review examines the current electrolysis processes for obtaining hydrogen, with an emphasis on alkaline water electrolysis. This process is far from being new, but research shows that there is still plenty of room for improvement. The efficiency of an electrolyzer mainly relates to the overpotential and resistances in the cell. This work shows that the path to better electrolyzer efficiency is through the optimization of the cell components and operating conditions. Following a brief introduction to the thermodynamics and kinetics of water electrolysis, the most recent developments on several parameters (e.g., electrocatalysts, electrolyte composition, separator, interelectrode distance) are highlighted.

Suggested Citation

  • Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3193-:d:565323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincent, Immanuel & Bessarabov, Dmitri, 2018. "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1690-1704.
    2. Wang, Mingyong & Wang, Zhi & Gong, Xuzhong & Guo, Zhancheng, 2014. "The intensification technologies to water electrolysis for hydrogen production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 573-588.
    3. Yan Li & Xinfa Wei & Lisong Chen & Jianlin Shi & Mingyuan He, 2019. "Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolai Lystbæk & Mikkel Gregersen & Hamid Reza Shaker, 2023. "Review of Energy Portfolio Optimization in Energy Markets Considering Flexibility of Power-to-X," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    2. Cristina Hora & Florin Ciprian Dan & Nicolae Rancov & Gabriela Elena Badea & Calin Secui, 2022. "Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review," Energies, MDPI, vol. 15(16), pages 1-21, August.
    3. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    4. Jarosław Gryz & Krzysztof Król & Anna Witkowska & Mariusz Ruszel, 2021. "Mobile Nuclear-Hydrogen Synergy in NATO Operations," Energies, MDPI, vol. 14(23), pages 1-12, November.
    5. Frank Gambou & Damien Guilbert & Michel Zasadzinski & Hugues Rafaralahy, 2022. "A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity," Energies, MDPI, vol. 15(9), pages 1-20, May.
    6. Ana L. Santos & Maria João Cebola & Jorge Antunes & Diogo M. F. Santos, 2023. "Insights on the Performance of Nickel Foam and Stainless Steel Foam Electrodes for Alkaline Water Electrolysis," Sustainability, MDPI, vol. 15(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    3. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    4. Lei, Yuanting & Zhang, Lili & Zhou, Danni & Xiong, Chengli & Zhao, Yafei & Chen, Wenxing & Xiang, Xu & Shang, Huishan & Zhang, Bing, 2022. "Construction of interconnected NiO/CoFe alloy nanosheets for overall water splitting," Renewable Energy, Elsevier, vol. 194(C), pages 459-468.
    5. Woong Hee Lee & Young-Jin Ko & Jung Hwan Kim & Chang Hyuck Choi & Keun Hwa Chae & Hansung Kim & Yun Jeong Hwang & Byoung Koun Min & Peter Strasser & Hyung-Suk Oh, 2021. "High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Daniela S. Falcão, 2023. "Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives," Energies, MDPI, vol. 16(2), pages 1-8, January.
    7. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    8. Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
    9. Darband, Ghasem Barati & Aliofkhazraei, Mahmood & Shanmugam, Sangaraju, 2019. "Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    12. An, Qi & Jin, Zhijiang & Li, Nan & Wang, Hongchao & Schmierer, Joel & Wei, Cundi & Hu, Hongyu & Gao, Qian & Woodall, Jerry M., 2022. "Study on the liquid phase-derived activation mechanism in Al-rich alloy hydrolysis reaction for hydrogen production," Energy, Elsevier, vol. 247(C).
    13. Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.
    14. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    15. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    16. Lin, Chiu-Yue & Nguyen, Thi Mai-Linh & Chu, Chen-Yeon & Leu, Hoang-Jyh & Lay, Chyi-How, 2018. "Fermentative biohydrogen production and its byproducts: A mini review of current technology developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4215-4220.
    17. Yang, Yang & Li, Jun & Yang, Yingrui & Lan, Linghan & Liu, Run & Fu, Qian & Zhang, Liang & Liao, Qiang & Zhu, Xun, 2022. "Gradient porous electrode-inducing bubble splitting for highly efficient hydrogen evolution," Applied Energy, Elsevier, vol. 307(C).
    18. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    19. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    20. Bellocchi, Sara & De Falco, Marcello & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2019. "Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 175(C), pages 847-861.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3193-:d:565323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.