IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v39y2011i11p6731-6744.html
   My bibliography  Save this item

The Japanese energy sector: Current situation, and future paths

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mahumane, Gilberto & Mulder, Peter, 2016. "Introducing MOZLEAP: An integrated long-run scenario model of the emerging energy sector of Mozambique," Energy Economics, Elsevier, vol. 59(C), pages 275-289.
  2. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
  3. Mah, Daphne Ngar-yin & Wu, Yun-Ying & Ip, Jasper Chi-man & Hills, Peter Ronald, 2013. "The role of the state in sustainable energy transitions: A case study of large smart grid demonstration projects in Japan," Energy Policy, Elsevier, vol. 63(C), pages 726-737.
  4. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
  5. Wang, Tan & Gong, Yu & Jiang, Chuanwen, 2014. "A review on promoting share of renewable energy by green-trading mechanisms in power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 923-929.
  6. Kumar, Subhash, 2016. "Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand," Applied Energy, Elsevier, vol. 163(C), pages 63-70.
  7. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
  8. Tang, Xu & Snowden, Simon & Höök, Mikael, 2013. "Analysis of energy embodied in the international trade of UK," Energy Policy, Elsevier, vol. 57(C), pages 418-428.
  9. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  10. Bricker, Jeremy D. & Esteban, Miguel & Takagi, Hiroshi & Roeber, Volker, 2017. "Economic feasibility of tidal stream and wave power in post-Fukushima Japan," Renewable Energy, Elsevier, vol. 114(PA), pages 32-45.
  11. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
  12. Lu, Hong-fang & Lin, Bin-le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2016. "Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1060-1072.
  13. Timothy Fraser & Daniel P. Aldrich, 2020. "The Fukushima effect at home: The changing role of domestic actors in Japanese energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(5), September.
  14. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
  15. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
  16. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
  17. Kuramochi, Takeshi & Wakiyama, Takako & Kuriyama, Akihisa, 2017. "Assessment of national greenhouse gas mitigation targets for 2030 through meta-analysis of bottom-up energy and emission scenarios: A case of Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 924-944.
  18. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
  19. del Río, Pablo & Mir-Artigues, Pere, 2012. "Support for solar PV deployment in Spain: Some policy lessons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5557-5566.
  20. Shunichi Hienuki & Yuki Kudoh & Hiroki Hondo, 2015. "Establishing a Framework for Evaluating Environmental and Socio-Economic Impacts by Power Generation Technology Using an Input–output Table—A Case Study of Japanese Future Electricity Grid Mix," Sustainability, MDPI, vol. 7(12), pages 1-18, November.
  21. Yao, Lixia & Shi, Xunpeng & Andrews-Speed, Philip, 2018. "Conceptualization of energy security in resource-poor economies: The role of the nature of economy," Energy Policy, Elsevier, vol. 114(C), pages 394-402.
  22. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
  23. Karunanithi, K. & Saravanan, S. & Prabakar, B.R. & Kannan, S. & Thangaraj, C., 2017. "Integration of Demand and Supply Side Management strategies in Generation Expansion Planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 966-982.
  24. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
  25. Sovacool, Benjamin K., 2013. "An international assessment of energy security performance," Ecological Economics, Elsevier, vol. 88(C), pages 148-158.
  26. Mahumane, Gilberto & Mulder, Peter, 2019. "Expanding versus greening? Long-term energy and emission transitions in Mozambique," Energy Policy, Elsevier, vol. 126(C), pages 145-156.
  27. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
  28. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
  29. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.
  30. del Río, Pablo & Tarancón, Miguel-Ángel, 2012. "Analysing the determinants of on-shore wind capacity additions in the EU: An econometric study," Applied Energy, Elsevier, vol. 95(C), pages 12-21.
  31. Ju-Hee Kim & Sin-Young Kim & Seung-Hoon Yoo, 2020. "Public Acceptance of the “Renewable Energy 3020 Plan”: Evidence from a Contingent Valuation Study in South Korea," Sustainability, MDPI, vol. 12(8), pages 1-12, April.
  32. Vázquez-Rowe, Ian & Reyna, Janet L. & García-Torres, Samy & Kahhat, Ramzy, 2015. "Is climate change-centrism an optimal policy making strategy to set national electricity mixes?," Applied Energy, Elsevier, vol. 159(C), pages 108-116.
  33. Jae-Seung Lee, 2013. "Towards green energy cooperation in Northeast Asia: implications from European experiences," Asia Europe Journal, Springer, vol. 11(3), pages 231-245, September.
  34. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.