IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v15y1993i2p123-129.html
   My bibliography  Save this item

Modelling energy technologies in a competitive market

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Yabei & Smith, Steven J. & Kyle, G. Page & Stackhouse Jr., Paul W., 2010. "Modeling the potential for thermal concentrating solar power technologies," Energy Policy, Elsevier, vol. 38(12), pages 7884-7897, December.
  2. Muratori, Matteo & Ledna, Catherine & McJeon, Haewon & Kyle, Page & Patel, Pralit & Kim, Son H. & Wise, Marshall & Kheshgi, Haroon S. & Clarke, Leon E. & Edmonds, Jae, 2017. "Cost of power or power of cost: A U.S. modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 861-874.
  3. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
  4. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E. & McJeon, Haewon C., 2015. "Long-term payoffs of near-term low-carbon deployment policies," Energy Policy, Elsevier, vol. 86(C), pages 493-505.
  5. Chaturvedi, Vaibhav & Kim, Son H., 2015. "Long term energy and emission implications of a global shift to electricity-based public rail transportation system," Energy Policy, Elsevier, vol. 81(C), pages 176-185.
  6. Franklyn Kanyako & Erin Baker, 2021. "Uncertainty analysis of the future cost of wind energy on climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-17, May.
  7. Yu, Sha & Yarlagadda, Brinda & Siegel, Jonas Elliott & Zhou, Sheng & Kim, Sonny, 2020. "The role of nuclear in China's energy future: Insights from integrated assessment," Energy Policy, Elsevier, vol. 139(C).
  8. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
  9. Ruben Bibas & C. Cassen & Renaud Crassous & Céline Guivarch & Meriem Hamdi-Cherif & Jean Charles Hourcade & Florian Leblanc & Aurélie Méjean & Eoin Ó Broin & Julie Rozenberg & Olivier Sassi & Adrien V, 2022. "IMpact Assessment of CLIMate policies with IMACLIM-R 1.1. Model documentation version 1.1," Working Papers hal-03702627, HAL.
  10. Zulfikar Yurnaidi & Suduk Kim, 2018. "Reducing Biomass Utilization in the Ethiopia Energy System: A National Modeling Analysis," Energies, MDPI, vol. 11(7), pages 1-17, July.
  11. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
  12. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
  13. Edmonds, Jae & Clarke, John & Dooley, James & Kim, Son H. & Smith, Steven J., 2004. "Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies," Energy Economics, Elsevier, vol. 26(4), pages 517-537, July.
  14. Pandey, Rahul, 2002. "Energy policy modelling: agenda for developing countries," Energy Policy, Elsevier, vol. 30(2), pages 97-106, January.
  15. Truong, Truong & Hamasaki, Hiroshi, 2018. "Disaggregating the electricity sector in a CGE model to allow competition theory to explain the introduction of new technologies to the sector," Conference papers 332953, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  16. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
  17. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
  18. Zhao, Xin & Calvin, Katherine & Wise, Marshall, 2020. "The critical role of conversion cost and comparative advantage in modeling agricultural land use change," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304204, Agricultural and Applied Economics Association.
  19. Baker, Erin & Chon, Haewon & Keisler, Jeffrey, 2009. "Advanced solar R&D: Combining economic analysis with expert elicitations to inform climate policy," Energy Economics, Elsevier, vol. 31(Supplemen), pages 37-49.
  20. Edmonds, James & Nichols, Christopher & Adamantiades, Misha & Bistline, John & Huster, Jonathan & Iyer, Gokul & Johnson, Nils & Patel, Pralit & Showalter, Sharon & Victor, Nadja & Waldhoff, Stephanie , 2020. "Could congressionally mandated incentives lead to deployment of large-scale CO2 capture, facilities for enhanced oil recovery CO2 markets and geologic CO2 storage?," Energy Policy, Elsevier, vol. 146(C).
  21. Betancourt-Torcat, Alberto & Elkamel, Ali & Ricardez-Sandoval, Luis, 2012. "A modeling study of the effect of carbon dioxide mitigation strategies, natural gas prices and steam consumption on the Canadian Oil Sands operations," Energy, Elsevier, vol. 45(1), pages 1018-1033.
  22. Henrik Klinge Jacobsen, 2000. "Technology Diffusion in Energy-Economy Models: The Case of Danish Vintage Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 43-71.
  23. Clarke, Leon & Eom, Jiyong & Marten, Elke Hodson & Horowitz, Russell & Kyle, Page & Link, Robert & Mignone, Bryan K. & Mundra, Anupriya & Zhou, Yuyu, 2018. "Effects of long-term climate change on global building energy expenditures," Energy Economics, Elsevier, vol. 72(C), pages 667-677.
  24. Hetong Wang & Kuishuang Feng & Peng Wang & Yuyao Yang & Laixiang Sun & Fan Yang & Wei-Qiang Chen & Yiyi Zhang & Jiashuo Li, 2023. "China’s electric vehicle and climate ambitions jeopardized by surging critical material prices," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  25. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
  26. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E., 2016. "Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?," Energy Policy, Elsevier, vol. 98(C), pages 400-411.
  27. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
  28. Pan, Xunzhang & Wang, Lining & Dai, Jiaquan & Zhang, Qi & Peng, Tianduo & Chen, Wenying, 2020. "Analysis of China’s oil and gas consumption under different scenarios toward 2050: An integrated modeling," Energy, Elsevier, vol. 195(C).
  29. Arbuckle, Evan J. & Binsted, Matthew & Davies, Evan G.R. & Chiappori, Diego V. & Bergero, Candelaria & Siddiqui, Muhammad-Shahid & Roney, Christopher & McJeon, Haewon C. & Zhou, Yuyu & Macaluso, Nick, 2021. "Insights for Canadian electricity generation planning from an integrated assessment model: Should we be more cautious about hydropower cost overruns?," Energy Policy, Elsevier, vol. 150(C).
  30. Gregory Nemet & Erin Baker & Bob Barron & Samuel Harms, 2015. "Characterizing the effects of policy instruments on the future costs of carbon capture for coal power plants," Climatic Change, Springer, vol. 133(2), pages 155-168, November.
  31. Sampedro, Jon & Kyle, Page & Ramig, Christopher W. & Tanner, Daniel & Huster, Jonathan E. & Wise, Marshall A., 2021. "Dynamic linking of upstream energy and freight demands for bio and fossil energy pathways in the Global Change Analysis Model," Applied Energy, Elsevier, vol. 302(C).
  32. Cohen, S.M. & Iyer, G.C. & Brown, M. & Macknick, J. & Wise, M. & Binsted, M. & Voisin, N. & Rice, J. & Hejazi, M., 2021. "How structural differences influence cross-model consistency: An electric sector case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  33. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
  34. Zhao, Xin & Calvin, Katherine V. & Wise, Marshall A. & Iyer, Gokul, 2021. "The role of global agricultural market integration in multiregional economic modeling: Using hindcast experiments to validate an Armington model," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 1-17.
  35. Son H. Kim & Mohamad Hejazi & Lu Liu & Katherine Calvin & Leon Clarke & Jae Edmonds & Page Kyle & Pralit Patel & Marshall Wise & Evan Davies, 2016. "Balancing global water availability and use at basin scale in an integrated assessment model," Climatic Change, Springer, vol. 136(2), pages 217-231, May.
  36. Zhou, Sheng & Tong, Qing & Pan, Xunzhang & Cao, Min & Wang, Hailin & Gao, Ji & Ou, Xunmin, 2021. "Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective," Energy Economics, Elsevier, vol. 95(C).
  37. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
  38. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
  39. Barron, Robert & McJeon, Haewon, 2015. "The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios," Energy Policy, Elsevier, vol. 80(C), pages 264-274.
  40. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
  41. Gokul Iyer & Yang Ou & James Edmonds & Allen A. Fawcett & Nathan Hultman & James McFarland & Jay Fuhrman & Stephanie Waldhoff & Haewon McJeon, 2022. "Ratcheting of climate pledges needed to limit peak global warming," Nature Climate Change, Nature, vol. 12(12), pages 1129-1135, December.
  42. Chaturvedi, Vaibhav & Kim, Sonny & Smith, Steven J. & Clarke, Leon & Yuyu, Zhou & Kyle, Page & Patel, Pralit, 2013. "Model evaluation and hindcasting: An experiment with an integrated assessment model," Energy, Elsevier, vol. 61(C), pages 479-490.
  43. Ou, Yang & Shi, Wenjing & Smith, Steven J. & Ledna, Catherine M. & West, J. Jason & Nolte, Christopher G. & Loughlin, Daniel H., 2018. "Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution," Applied Energy, Elsevier, vol. 216(C), pages 482-493.
  44. Felipe Feijoo & Gokul Iyer & Matthew Binsted & James Edmonds, 2020. "US energy system transitions under cumulative emissions budgets," Climatic Change, Springer, vol. 162(4), pages 1947-1963, October.
  45. Iyer, Gokul & Hultman, Nathan & Fetter, Steve & Kim, Son H., 2014. "Implications of small modular reactors for climate change mitigation," Energy Economics, Elsevier, vol. 45(C), pages 144-154.
  46. Fragkos, Panagiotis & Kouvaritakis, Nikos, 2018. "Model-based analysis of Intended Nationally Determined Contributions and 2 °C pathways for major economies," Energy, Elsevier, vol. 160(C), pages 965-978.
  47. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  48. Xin Zhao & Katherine V. Calvin & Marshall A. Wise, 2020. "The Critical Role Of Conversion Cost And Comparative Advantage In Modeling Agricultural Land Use Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-44, February.
  49. Chaturvedi, Vaibhav & Eom, Jiyong & Clarke, Leon E. & Shukla, Priyadarshi R., 2014. "Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework," Energy Policy, Elsevier, vol. 64(C), pages 226-242.
  50. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
  51. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.