IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v64y2014icp226-242.html
   My bibliography  Save this article

Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework

Author

Listed:
  • Chaturvedi, Vaibhav
  • Eom, Jiyong
  • Clarke, Leon E.
  • Shukla, Priyadarshi R.

Abstract

With increasing population, income, and urbanization, meeting the energy service demands for the building sector will be a huge challenge for Indian energy policy. Although there is broad consensus that the Indian building sector will grow and evolve over the coming century, there is little understanding of the potential nature of this evolution over the longer term. The present study uses a technologically detailed, service based building energy model nested in the long term, global, integrated assessment framework, GCAM, to produce scenarios of the evolution of the Indian buildings sector up through the end of the century. The results support the idea that as India evolves toward developed country per-capita income levels, its building sector will largely evolve to resemble those of the currently developed countries (heavy reliance on electricity both for increasing cooling loads and a range of emerging appliance and other plug loads), albeit with unique characteristics based on its climate conditions (cooling dominating heating and even more so with climate change), on fuel preferences that may linger from the present (for example, a preference for gas for cooking), and vestiges of its development path (including remnants of rural poor that use substantial quantities of traditional biomass).

Suggested Citation

  • Chaturvedi, Vaibhav & Eom, Jiyong & Clarke, Leon E. & Shukla, Priyadarshi R., 2014. "Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework," Energy Policy, Elsevier, vol. 64(C), pages 226-242.
  • Handle: RePEc:eee:enepol:v:64:y:2014:i:c:p:226-242
    DOI: 10.1016/j.enpol.2012.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151200986X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    2. Clarke, John F. & Edmonds, J. A., 1993. "Modelling energy technologies in a competitive market," Energy Economics, Elsevier, vol. 15(2), pages 123-129, April.
    3. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    4. Krey, Volker & O'Neill, Brian C. & van Ruijven, Bas & Chaturvedi, Vaibhav & Daioglou, Vassilis & Eom, Jiyong & Jiang, Leiwen & Nagai, Yu & Pachauri, Shonali & Ren, Xiaolin, 2012. "Urban and rural energy use and carbon dioxide emissions in Asia," Energy Economics, Elsevier, vol. 34(S3), pages 272-283.
    5. Edmonds, Jae & Reilly, John, 1983. "A long-term global energy- economic model of carbon dioxide release from fossil fuel use," Energy Economics, Elsevier, vol. 5(2), pages 74-88, April.
    6. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    7. Urban, Frauke & Benders, René M.J. & Moll, Henri C., 2009. "Energy for rural India," Applied Energy, Elsevier, vol. 86(Supplemen), pages 47-57, November.
    8. Rehman, Ibrahim Hafeezur & Malhotra, Preeti & Pal, Ram Chandra & Singh, Phool Badan, 2005. "Availability of kerosene to rural households: a case study from India," Energy Policy, Elsevier, vol. 33(17), pages 2165-2174, November.
    9. S. Narayan, 2009. "India," Chapters, in: Peter Draper & Philip Alves & Razeen Sally (ed.), The Political Economy of Trade Reform in Emerging Markets, chapter 7, Edward Elgar Publishing.
    10. Permana, A.S. & Perera, R. & Kumar, S., 2008. "Understanding energy consumption pattern of households in different urban development forms: A comparative study in Bandung City, Indonesia," Energy Policy, Elsevier, vol. 36(11), pages 4287-4297, November.
    11. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    2. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    3. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    4. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    5. De Cian, Enrica & Dasgupta, Shouro & Hof, Andries F. & van Sluisveld, Mariësse A.E. & Köhler, Jonathan & Pfluger, Benjamin & van Vuuren, Detlef P., 2020. "Actors, decision-making, and institutions in quantitative system modelling," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    6. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    7. Clarke, Leon & Eom, Jiyong & Marten, Elke Hodson & Horowitz, Russell & Kyle, Page & Link, Robert & Mignone, Bryan K. & Mundra, Anupriya & Zhou, Yuyu, 2018. "Effects of long-term climate change on global building energy expenditures," Energy Economics, Elsevier, vol. 72(C), pages 667-677.
    8. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    9. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    10. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    11. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.
    12. Vaibhav Chaturvedi & Priyadarshi Shukla, 2014. "Role of energy efficiency in climate change mitigation policy for India: assessment of co-benefits and opportunities within an integrated assessment modeling framework," Climatic Change, Springer, vol. 123(3), pages 597-609, April.
    13. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    14. Clare Hanmer & Charlie Wilson & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2022. "Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level," Energies, MDPI, vol. 15(5), pages 1-31, February.
    15. Bhattacharyya, Subhes C., 2015. "Influence of India’s transformation on residential energy demand," Applied Energy, Elsevier, vol. 143(C), pages 228-237.
    16. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    17. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    18. Chaturvedi, Vaibhav & Clarke, Leon & Edmonds, James & Calvin, Katherine & Kyle, Page, 2014. "Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales," Energy Economics, Elsevier, vol. 46(C), pages 267-278.
    19. Chaturvedi, Vaibhav & Kim, Sonny & Smith, Steven J. & Clarke, Leon & Yuyu, Zhou & Kyle, Page & Patel, Pralit, 2013. "Model evaluation and hindcasting: An experiment with an integrated assessment model," Energy, Elsevier, vol. 61(C), pages 479-490.
    20. van Ruijven, Bas J. & O’Neill, Brian C. & Chateau, Jean, 2015. "Methods for including income distribution in global CGE models for long-term climate change research," Energy Economics, Elsevier, vol. 51(C), pages 530-543.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:64:y:2014:i:c:p:226-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.