IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "The structure of dynamic correlations in multivariate stochastic volatility models"

by Asai, Manabu & McAleer, Michael

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Manabu Asai & Michael McAleer, 2011. "Dynamic Conditional Correlations for Asymmetric Processes," Documentos de Trabajo del ICAE 2011-30, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  2. Roberto Casarin & Domenico Sartore, 2007. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 2007_30, Department of Economics, University of Venice "Ca' Foscari".
  3. Gianni Amisano & Roberto Casarin, 2008. "Particle Filters for Markov-Switching Stochastic-Correlation Models," Working Papers 0814, University of Brescia, Department of Economics.
  4. Christian M. Hafner & Hans Manner, 2012. "Dynamic stochastic copula models: estimation, inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 269-295, 03.
  5. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
  6. Jin, Xin & Maheu, John M, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," MPRA Paper 60102, University Library of Munich, Germany.
  7. Jun Yu, 2008. "A Semiparametric Stochastic Volatility Model," Working Papers CoFie-04-2008, Sim Kee Boon Institute for Financial Economics.
  8. Le Pen, Yannick & Sévi, Benoît, 2010. "Revisiting the excess co-movements of commodity prices in a data-rich environment," Economics Papers from University Paris Dauphine 123456789/6800, Paris Dauphine University.
  9. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
  10. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Volatility Spillovers Between Crude Oil Futures Returns and Oil Company Stocks Return," CIRJE F-Series CIRJE-F-639, CIRJE, Faculty of Economics, University of Tokyo.
  11. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
  12. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2010. "Block Structure Multivariate Stochastic Volatility Models," Working Papers in Economics 10/24, University of Canterbury, Department of Economics and Finance.
  13. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
  14. So, Mike K.P. & Yeung, Cherry Y.T., 2014. "Vine-copula GARCH model with dynamic conditional dependence," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 655-671.
  15. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
  16. Xin Zhang & Drew Creal & Siem Jan Koopman & Andre Lucas, 2011. "Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails," Tinbergen Institute Discussion Papers 11-078/2/DSF22, Tinbergen Institute.
  17. Xiao, Yuewen & Ku, Yu-Cheng & Bloomfield, Peter & Ghosh, Sujit K., 2015. "On the degrees of freedom in MCMC-based Wishart models for time series data," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 59-64.
  18. Xin Zhang & Drew Creal & Siem Jan Koopman & Andre Lucas, 2011. "Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails," Tinbergen Institute Discussion Papers 11-078/2/DSF22, Tinbergen Institute.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.