IDEAS home Printed from https://ideas.repec.org/p/zbw/icirwp/4723.html
   My bibliography  Save this paper

Enhancing gradient capital allocation with orthogonal convexity scenarios

Author

Listed:
  • Aigner, Philipp
  • Schlütter, Sebastian

Abstract

Gradient capital allocation, also known as Euler allocation, is a technique used to redistribute diversified capital requirements among different segments of a portfolio. The method is commonly employed to identify dominant risks, assessing the risk-adjusted profitability of segments, and installing limit systems. However, capital allocation can be misleading in all these applications because it only accounts for the current portfolio composition and ignores how diversification effects may change with a portfolio restructuring. This paper proposes enhancing the gradient capital allocation by adding "orthogonal convexity scenarios" (OCS). OCS identify risk concentrations that potentially drive portfolio risk and become relevant after restructuring. OCS have strong ties with principal component analysis (PCA), but they are a more general concept and compatible with common empirical patterns of risk drivers being fat-tailed and increasingly dependent in market downturns. We illustrate possible applications of OCS in terms of risk communication and risk limits.

Suggested Citation

  • Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
  • Handle: RePEc:zbw:icirwp:4723
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/271086/1/1844769798.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    2. Martin Eling & Hato Schmeiser, 2010. "Insurance and the Credit Crisis: Impact and Ten Consequences for Risk Management and Supervision," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 35(1), pages 9-34, January.
    3. Katja Schilling & Daniel Bauer & Marcus C. Christiansen & Alexander Kling, 2020. "Decomposing Dynamic Risks into Risk Components," Management Science, INFORMS, vol. 66(12), pages 5738-5756, December.
    4. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    5. Erel, Isil & Myers, Stewart C. & Read, James A., 2015. "A theory of risk capital," Journal of Financial Economics, Elsevier, vol. 118(3), pages 620-635.
    6. Breuer, Thomas & Csiszár, Imre, 2013. "Systematic stress tests with entropic plausibility constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1552-1559.
    7. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    8. René M. Stulz, 2008. "Risk Management Failures: What Are They and When Do They Happen?," Journal of Applied Corporate Finance, Morgan Stanley, vol. 20(4), pages 39-48, September.
    9. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    10. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    11. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    12. Boonen, Tim J. & Tsanakas, Andreas & Wüthrich, Mario V., 2017. "Capital allocation for portfolios with non-linear risk aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 95-106.
    13. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    14. Joachim Paulusch, 2017. "The Solvency II Standard Formula, Linear Geometry, and Diversification," JRFM, MDPI, vol. 10(2), pages 1-12, May.
    15. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    16. Jens H. E. Christensen & Glenn D. Rudebusch, 2015. "Estimating Shadow-Rate Term Structure Models with Near-Zero Yields," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 226-259.
    17. Packham, N. & Woebbeking, C.F., 2019. "A factor-model approach for correlation scenarios and correlation stress testing," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 92-103.
    18. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    19. Paulusch, Joachim & Schlütter, Sebastian, 2022. "Sensitivity-implied tail-correlation matrices," Journal of Banking & Finance, Elsevier, vol. 134(C).
    20. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    21. Natalie Packham & Fabian Woebbeking, 2018. "A factor-model approach for correlation scenarios and correlation stress-testing," Papers 1807.11381, arXiv.org, revised Jan 2019.
    22. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    23. Z. Landsman & U. Makov, 2011. "Translation-invariant and positive-homogeneous risk measures and optimal portfolio management," The European Journal of Finance, Taylor & Francis Journals, vol. 17(4), pages 307-320.
    24. Helmut Gründl & Hato Schmeiser, 2007. "Capital Allocation for Insurance Companies—What Good IS IT?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 301-317, June.
    25. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    26. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    27. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    28. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    29. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    30. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    31. McNeil, Alexander J. & Smith, Andrew D., 2012. "Multivariate stress scenarios and solvency," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 299-308.
    32. Chen Chen & Garud Iyengar & Ciamac C. Moallemi, 2013. "An Axiomatic Approach to Systemic Risk," Management Science, INFORMS, vol. 59(6), pages 1373-1388, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aigner, Philipp, 2023. "Identifying scenarios for the own risk and solvency assessment of insurance companies," ICIR Working Paper Series 48/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    2. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    3. Paulusch, Joachim & Schlütter, Sebastian, 2022. "Sensitivity-implied tail-correlation matrices," Journal of Banking & Finance, Elsevier, vol. 134(C).
    4. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    5. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    6. Paulusch, Joachim & Schlütter, Sebastian, 2021. "Sensitivity-implied tail-correlation matrices," ICIR Working Paper Series 33/19, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR), revised 2021.
    7. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    8. Stephen J. Mildenhall, 2017. "Actuarial Geometry," Risks, MDPI, vol. 5(2), pages 1-44, June.
    9. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    10. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    11. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    12. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    13. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    14. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    15. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    16. Tinic, Murat & Sensoy, Ahmet & Demir, Muge & Nguyen, Duc Khuong, 2020. "Broker Network Connectivity and the Cross-Section of Expected Stock Returns," MPRA Paper 104719, University Library of Munich, Germany.
    17. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    18. Martin Eling & David Antonius Pankoke, 2016. "Systemic Risk in the Insurance Sector: A Review and Directions for Future Research," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 19(2), pages 249-284, September.
    19. Christian Kubitza, 2021. "Tackling the Volatility Paradox: Spillover Persistence and Systemic Risk," ECONtribute Discussion Papers Series 079, University of Bonn and University of Cologne, Germany.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.

    More about this item

    Keywords

    Risk capital allocation; Scenario analysis; Risk communication; Risklimiting; Principal Component Analysis;
    All these keywords.

    JEL classification:

    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:icirwp:4723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/icffmde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.