IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Finding relevant variables in sparse Bayesian factor models: Economic applications and simulation results

  • Kaufmann, Sylvia
  • Schumacher, Christian

This paper considers factor estimation from heterogenous data, where some of the variables are noisy and only weakly informative for the factors. To identify the irrelevant variables, we search for zero rows in the loadings matrix of the factor model. To sharply separate these irrelevant variables from the informative ones, we choose a Bayesian framework for factor estimation with sparse priors on the loadings matrix. The choice of a sparse prior is an extension to the existing macroeconomic literature, which predominantly uses normal priors on the loadings. Simulations show that the sparse factor model can well detect various degrees of sparsity in the data, and how irrelevant variables can be identified. Empirical applications to a large multi-country GDP dataset and disaggregated CPI inflation data for the US reveal that sparsity matters a lot, as the majority of the variables in both datasets are irrelevant for factor estimation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://econstor.eu/bitstream/10419/67404/1/73185201X.pdf
Download Restriction: no

Paper provided by Deutsche Bundesbank, Research Centre in its series Discussion Papers with number 29/2012.

as
in new window

Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:zbw:bubdps:292012
Contact details of provider: Postal: Postfach 10 06 02, 60006 Frankfurt
Phone: 0 69 / 95 66 - 34 55
Fax: 0 69 / 95 66 30 77
Web page: http://www.bundesbank.de/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  2. Altissimo, Filippo & Cristadoro, Riccardo & Forni, Mario & Lippi, Marco & Veronese, Giovanni, 2006. "New EuroCOIN: Tracking Economic Growth in Real Time," CEPR Discussion Papers 5633, C.E.P.R. Discussion Papers.
  3. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-57, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:zbw:bubdps:292012. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.