IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Markovian Quadratic Term Structure Models For Risk-free And Defaultable Rates

  • Li Chen

    (Princeton University)

  • H. Vincent Poor

    (Princeton University)

Registered author(s):

In this paper, a class of regular quadratic Gaussian processes is defined to characterize quadratic term structure models (QTSMs) in a general Markovian setting. The primary motivation for this definition is to provide a more general model for the quadratic term structure of the forward curve, while maintaining the analytical tractability of the traditional QTSMs. It is demonstrated that the tractability of QTSMs does not necessarily rely on the Ornstein-Uhlenbeck state processes used in their traditional definition. Rather, the crucial element that provides analytical solutions for the prices of zero-coupon bonds and their options is a so-called quadratic Gaussian property as defined in this paper. In order to retain this property for a general Markov process, it is shown that, under the regularity conditions, no jumps are allowed in the infinitesimal generator of the process. It is further shown that the coefficient functions defined in the quadratic Gaussian property can be determined by multi-variate Riccati equations with a unique admissible parameter set. The implications of this result for modeling the term structure of risk-free rates and defaultable rates are discussed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/fin/papers/0303/0303008.pdf
Download Restriction: no

Paper provided by EconWPA in its series Finance with number 0303008.

as
in new window

Length: 20 pages
Date of creation: 31 Mar 2003
Date of revision:
Handle: RePEc:wpa:wuwpfi:0303008
Note: Type of Document - pdf; prepared on IBM PC - PC-TEX/UNIX Sparc TeX; to print on HP/PostScript/Franciscan monk; pages: 20; figures: included/request from author/draw your own. We never published this piece and now we would like to reduce our mailing and xerox cost by posting it.
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Markus Leippold & Liuren Wu, 2002. "Asset Pricing Under The Quadratic Class," Finance 0207015, EconWPA.
  2. Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.
  3. Markus Leippold & Liuren Wu, 2002. "Design and Estimation of Quadratic Term Structure Models," Finance 0207014, EconWPA.
  4. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
  5. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0303008. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.