IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Bayesian Semiparametric Regression for Autoregressive Models with Possible Unit Roots

  • Ricardo Gonçalves Silva

    (Instituto de Ciências Matemáticas e de Computação)

In this paper we consider bayesian semiparametric regression within the generalized linear model framework. Specifically, we study a class of autoregressive time series where the time trend is incorporated in a nonparametrically way. Estimation and inference where performed through Markov Chain Monte Carlo simulation techniques. Main results show that treating the time trend nonparametrically possible model misspecification and biased results from structural break issues are solved. Empirical applications are conducted using the extended Nelson and Plosser benchmark time series

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 0405002.

in new window

Length: 16 pages
Date of creation: 20 May 2004
Date of revision:
Handle: RePEc:wpa:wuwpem:0405002
Note: Type of Document - pdf; pages: 16
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dahl Christian M. & Gonzalez-Rivera Gloria, 2003. "Identifying Nonlinear Components by Random Fields in the US GNP Growth. Implications for the Shape of the Business Cycle," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(1), pages 1-35, April.
  2. Peter C. Schotman & Herman K. van Dijk, 1991. "On Bayesian routes to unit roots," Discussion Paper / Institute for Empirical Macroeconomics 43, Federal Reserve Bank of Minneapolis.
  3. Gourieroux Christian & Monfort Alain & Trognon A, 1984. "General approach of serial correlation (a)," CEPREMAP Working Papers (Couverture Orange) 8424, CEPREMAP.
  4. Zivot, Eric & Andrews, Donald W K, 1992. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 251-70, July.
  5. Campbell, J.Y. & Perron, P., 1991. "Pitfalls and Opportunities: What Macroeconomics should know about unit roots," Papers 360, Princeton, Department of Economics - Econometric Research Program.
  6. Gourieroux, C. & Monfort, A. & Trognon, A., 1985. "A General Approach to Serial Correlation," Econometric Theory, Cambridge University Press, vol. 1(03), pages 315-340, December.
  7. Efstathios Paparoditis & Dimitris N. Politis, 2003. "Residual-Based Block Bootstrap for Unit Root Testing," Econometrica, Econometric Society, vol. 71(3), pages 813-855, 05.
  8. Valentina Corradi & Norman R. Swanson, 2003. "Bootstrap Conditional Distribution Tests In the Presence of Dynamic Misspecification," Departmental Working Papers 200311, Rutgers University, Department of Economics.
  9. Christiano, Lawrence J, 1992. "Searching for a Break in GNP," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 237-50, July.
  10. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
  11. Robinson, Peter M, 1982. "On the Asymptotic Properties of Estimators of Models Containing Limited Dependent Variables," Econometrica, Econometric Society, vol. 50(1), pages 27-41, January.
  12. Phillips, P C B, 1991. "Bayesian Routes and Unit Roots: De Rebus Prioribus Semper Est Disputandum," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 435-73, Oct.-Dec..
  13. Perron, Pierre, 1988. "Trends and random walks in macroeconomic time series : Further evidence from a new approach," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 297-332.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0405002. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.