IDEAS home Printed from
   My bibliography  Save this article

Identifying Nonlinear Components by Random Fields in the US GNP Growth. Implications for the Shape of the Business Cycle


  • Dahl Christian M.

    () (Purdue University)

  • Gonzalez-Rivera Gloria

    () (University of California, Riverside)


Within a flexible parametric regression framework (Hamilton, 2001) we provide further evidence on the existence of a nonlinear component in the quarterly growth rate of the US real GNP. We implement a battery of new tests for neglected nonlinearity based on the theory of random fields (Dahl and Gonzalez-Rivera, 2003). We find that the nonlinear component is driven by the fifth lag of the growth rate. We show that our model is superior to linear and nonlinear parametric specifications because it produces a business cycle that when dissected with the BBQ algorithm mimics very faithfully the characteristics of the actual US business cycle. On understanding the relevance of the fifth lag, we find that the nonparametrically estimated conditional mean supports parametric specifications that allow for three phases in the business cycle: rapid linear contractions, aggressive short-lived convex early expansions, and moderate/slow relatively long concave late expansions.

Suggested Citation

  • Dahl Christian M. & Gonzalez-Rivera Gloria, 2003. "Identifying Nonlinear Components by Random Fields in the US GNP Growth. Implications for the Shape of the Business Cycle," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(1), pages 1-35, April.
  • Handle: RePEc:bpj:sndecm:v:7:y:2003:i:1:n:2

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Karim M. Abadir & Jan R. Magnus, 2002. "Notation in econometrics: a proposal for a standard," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 76-90, June.
    3. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    4. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    5. Dahl, Christian M. & Gonzalez-Rivera, Gloria, 2003. "Testing for neglected nonlinearity in regression models based on the theory of random fields," Journal of Econometrics, Elsevier, vol. 114(1), pages 141-164, May.
    6. Hamilton, James D, 2001. "A Parametric Approach to Flexible Nonlinear Inference," Econometrica, Econometric Society, vol. 69(3), pages 537-573, May.
    7. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, January.
    8. Durland, J Michael & McCurdy, Thomas H, 1994. "Duration-Dependent Transitions in a Markov Model of U.S. GNP Growth," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 279-288, July.
    9. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters,in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1 National Bureau of Economic Research, Inc.
    10. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    11. Michael P. Clements & Hans-Martin Krolzig, 1998. "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 47-75.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ricardo Gonçalves Silva, 2004. "Bayesian Semiparametric Regression for Autoregressive Models with Possible Unit Roots," Econometrics 0405002, EconWPA.
    2. Blake LeBaron, 2013. "Heterogeneous Agents and Long Horizon Features of Asset Prices," Working Papers 63, Brandeis University, Department of Economics and International Businesss School, revised Sep 2013.
    3. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    4. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:7:y:2003:i:1:n:2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.