IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa02p141.html
   My bibliography  Save this paper

Space-time modeling of traffic flow

Author

Listed:
  • Kamarianakis, Yiannis

  • Prastacos, Poulicos

Abstract

A key concern in transportation planning and traffic management is the ability to forecast traffic flows on a street network. Traffic flows forecasts can be transformed to obtain travel time estimates and then use these as input to travel demand models, dynamic route guidance and congestion management procedures. A variety of mathematical techniques have been proposed for modeling traffic flow on a street network. Briefly, the most widely used theories are: -Kinetic models based on partial differential equations that describe waves of different traffic densities, -deterministic models that use nonlinear equations for the estimation of different car routes, -large scale simulation models such as cellular automata and, -stochastic modeling of traffic density at distinct points in space. One problem with these approaches is that the traffic flow process is characterized by nonstationarities that cannot be taken into account by the vast majority of modeling strategies. However, recent advances in statistical modeling in fields such as econometrics or environmetrics enable us to overcome this problem. The aim of this work is to present how two statistical techniques, namely, vector autoregressive modeling and dynamic space-time modeling can be used to develop efficient and reliable forecasts of traffic flow. The former approach is encountered in the econometrics literature, whereas the later is mostly used in environmetrics. Recent advances in statistical methodology provide powerful tools for traffic flow description and forecasting. For a purely statistical approach to travel time prediction one may consult Rice and van Zwet (2002). In this work, the authors employ a time varying coefficients regression technique that can be easily implemented computationally, but is sensitive to nonstationarities and does not take into account traffic flow information from neighboring points in the network that can significantly improve forecasts. According to our approach, traffic flow measurements, that is count of vehicles and road occupancy obtained at constants time intervals through loop detectors located at various distinct points of a road network, form a multiple time series set. This set can be described by a vector autoregressive process that models each series as a linear combination of past observations of some (optimally selected) components of the vector; in our case the vector is comprised by the different measurement points of traffic flow. For a thorough technical discussion on vector autoregressive processes we refer to Lutkerpohl (1987), whereas a number of applications can be found in Ooms (1994). Nowadays, these models are easily implemented in commercial software like SAS or MATLAB; see for example LeSage (1999). The spatial distribution of the measurement locations and their neighboring relations cannot be incorporated in a vector autoregressive model. However, accounting for this information may optimize model fitting and provide insight into spatial correlation structures that evolve through time. This can be accomplished by applying space-time modeling techniques. The main difference of space-time models encountered in literature with the vector autoregressive ones lies in the inclusion of a weight matrix that defines the neighboring relations and places the appropriate restrictions. For some early references on space-time models, one could consult Pfeifer and Deutsch (1980 a,b); for a Bayesian approach, insensitive to nonstationarities we refer to Wikle, Berliner and Cressie (1998). In this work, we discuss how the space-time methodology can be implemented to traffic flow modeling. The aforementioned modeling strategies are applied in a subset of traffic flow measurements collected every 15 minutes through loop detectors at 74 locations in the city of Athens. A comparative study in terms of model fitting and forecasting accuracy is performed. Univariate time series models are also fitted in each measurement location in order to investigate the relation between a model's dimension and performance. References: LeSage J. P. (1999). Applied Econometrics using MATLAB. Manuscript, Dept. of Economics, University of Toronto Lutkerpohl H. (1987). Forecasting Aggregated Vector ARMA Processes. Lecture Notes in Economics and Mathematical Systems. Springer Verlag Berlin Heidelberg Ooms M. (1994). Empirical Vector Autoregressive Modeling. Springer Verlag Berlin Heidelberg Pfeifer P. E., and Deutsch S. J. (1980a). A three-stage iterative procedure for Space-Time Modeling. Technometrics, 22, 35-47 Pfeifer P. E., and Deutsch S. J. (1980b). Identification and Interpretation of First-Order Space-Time ARMA models. Technometrics, 22, 397-408 Rice J., and van Zwet E. (2002). A simple and effective method for predicting travel times on freeways. Manuscript, Dept. of Statistics, University of California at Berkeley Wikle C. K., Berliner L. M. and Cressie N. (1998). Hierarchical Bayesian space-time models. Environmental and Ecological Statistics, 5, 117-154

Suggested Citation

  • Kamarianakis, Yiannis & Prastacos, Poulicos, 2002. "Space-time modeling of traffic flow," ERSA conference papers ersa02p141, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa02p141
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa02/cd-rom/papers/141.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whittaker, Joe & Garside, Simon & Lindveld, Karel, 1997. "Tracking and predicting a network traffic process," International Journal of Forecasting, Elsevier, vol. 13(1), pages 51-61, March.
    2. Elhorst, J.P., 2000. "Dynamic models in space and time," Research Report 00C16, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    3. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    4. repec:dgr:rugsom:00c16 is not listed on IDEAS
    5. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    6. Giacomini, Raffaella & Granger, Clive W.J., 2001. "Aggregationn of Space-Time Processes," University of California at San Diego, Economics Working Paper Series qt77f76455, Department of Economics, UC San Diego.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alyse K. Winchester & Ryan A. Peterson & Ellison Carter & Mary D. Sammel, 2021. "Impact of COVID-19 Social Distancing Policies on Traffic Congestion, Mobility, and NO 2 Pollution," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    2. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    3. Min Deng & Wentao Yang & Qiliang Liu & Yunfei Zhang, 2017. "A divide-and-conquer method for space–time series prediction," Journal of Geographical Systems, Springer, vol. 19(1), pages 1-19, January.
    4. Shanjiang Zhu & David Levinson, 2011. "A Portfolio Theory of Route Choice," Working Papers 000096, University of Minnesota: Nexus Research Group.
    5. Paravantis, John & Sambracos, Evangelos & Ntanos, Stamatios, 2008. "Energy Consumption and Carbon Dioxide Emissions of a Suburban Coastal Transport System," MPRA Paper 66438, University Library of Munich, Germany.
    6. Gehman, Andrew & Wei, William W.S., 2020. "Optimal spatial aggregation of space–time models and applications," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    7. Yiannis Kamarianakis & Poulicos Prastacos, 2006. "Spatial Time-Series Modeling: A review of the proposed methodologies," Working Papers 0604, University of Crete, Department of Economics.
    8. Junseo Bae & Kunhee Choi, 2021. "A land-use clustering approach to capturing the level-of-service of large urban corridors: A case study in downtown Los Angeles," Environment and Planning B, , vol. 48(7), pages 2093-2109, September.
    9. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    10. Yang, Yang & Zhang, Honglei, 2019. "Spatial-temporal forecasting of tourism demand," Annals of Tourism Research, Elsevier, vol. 75(C), pages 106-119.
    11. Yanmin Qi & Zuduo Zheng & Dongyao Jia, 2020. "Exploring the Spatial-Temporal Relationship between Rainfall and Traffic Flow: A Case Study of Brisbane, Australia," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    12. Tao Cheng & James Haworth & Jiaqiu Wang, 2012. "Spatio-temporal autocorrelation of road network data," Journal of Geographical Systems, Springer, vol. 14(4), pages 389-413, October.
    13. Yiannis Kamarianakis, 2006. "Hierarchical Bayesian Modeling For Spatial Time Series: An Alternative Approach To Spatial Sur," Working Papers 0605, University of Crete, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prodosh Simlai, 2018. "Spatial Dependence, Idiosyncratic Risk, and the Valuation of Disaggregated Housing Data," The Journal of Real Estate Finance and Economics, Springer, vol. 57(2), pages 192-230, August.
    2. Massimiliano Agovino & Antonio Garofalo, 2013. "Dipendenza spaziale contemporanea e non contemporanea nei tassi di disoccupazione: un tentativo di analisi empirica dei dati provinciali italiani," RIVISTA DI ECONOMIA E STATISTICA DEL TERRITORIO, FrancoAngeli Editore, vol. 2013(3), pages 45-82.
    3. Kristie M. Engemann & Ruben Hernandez-Murillo & Michael T. Owyang, 2011. "Regional aggregation in forecasting: an application to the Federal Reserve’s Eighth District," Review, Federal Reserve Bank of St. Louis, vol. 93(May), pages 207-222.
    4. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas F. Quising, 2006. "Measuring Regional Market Integration by Dynamic Factor Error Correction Model (DF-ECM) Approach - The Case of Developing Asia," Working Papers 565, Queen Mary University of London, School of Economics and Finance.
    5. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    6. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    7. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    8. Patrick Doupe, 2014. "The Costs of Error in Setting Reference Rates for Reduced Deforestation," CCEP Working Papers 1415, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    9. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
    10. Youri Davydov & Vygantas Paulauskas, 2008. "On estimation of parameters for spatial autoregressive model," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 237-247, October.
    11. Paelinck, J. & Mur, J. & Trívez, J., 2004. "Econometría espacial: más luces que sombras," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 22, pages 1-19, Diciembre.
    12. Frédérick Demers & Annie De Champlain, 2005. "Forecasting Core Inflation in Canada: Should We Forecast the Aggregate or the Components?," Staff Working Papers 05-44, Bank of Canada.
    13. Percoco, Marco, 2015. "Temporal aggregation and spatio-temporal traffic modeling," Journal of Transport Geography, Elsevier, vol. 46(C), pages 244-247.
    14. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    15. Caporin Massimiliano & Paruolo Paolo, 2005. "Spatial effects in multivariate ARCH," Economics and Quantitative Methods qf0501, Department of Economics, University of Insubria.
    16. Arnab Bhattacharjee & Sean Holly, 2013. "Understanding Interactions in Social Networks and Committees," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(1), pages 23-53, March.
    17. Girum Dagnachew Abate & Niels Haldrup, 2017. "Space-time modeling of electricity spot prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    18. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    19. Shi, Xiaoxia & Phillips, Peter C.B., 2012. "Nonlinear Cointegrating Regression Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 28(3), pages 509-547, June.
    20. Blazej Mazur, 2015. "Density forecasts based on disaggregate data: nowcasting Polish inflation," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 15, pages 71-87.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa02p141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.