IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1695-1699.html
   My bibliography  Save this article

A note on marginal and conditional independence

Author

Listed:
  • Loperfido, Nicola

Abstract

Some statistical models imply that two random vectors are marginally independent as well as being conditionally independent with respect to another random vector. When the joint distribution of the vectors is normal, canonical correlation analysis may lead to relevant simplifications of the dependence structure. A similar application can be found in elliptical models, where linear independence does not imply statistical independence. Implications for Bayes analysis of the general linear model are discussed.

Suggested Citation

  • Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1695-1699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00201-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosoya, Yuzo, 1977. "On the Granger Condition for Non-Causality," Econometrica, Econometric Society, vol. 45(7), pages 1735-1736, October.
    2. Nanny Wermuth & D. R. Cox, 2004. "Joint response graphs and separation induced by triangular systems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 687-717.
    3. Eichler, Michael, 2007. "Granger causality and path diagrams for multivariate time series," Journal of Econometrics, Elsevier, vol. 137(2), pages 334-353, April.
    4. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    5. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    6. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    7. Florens, Jean-Pierre & Mouchart, Michel, 1985. "A Linear Theory for Noncausality," Econometrica, Econometric Society, vol. 53(1), pages 157-175, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1695-1699. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.