IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v26y2007i1p1-24.html
   My bibliography  Save this article

Variance (Non) Causality in Multivariate GARCH

Author

Listed:
  • Massimiliano Caporin

Abstract

This paper extends the current literature on the variance-causality topic providing the coefficient restrictions ensuring variance noncausality within multivariate GARCH models with in-mean effects. Furthermore, this paper presents a new multivariate model, the exponential causality GARCH. By the introduction of a multiplicative causality impact function, the variance causality effects becomes directly interpretable and can therefore be used to detect both the existence of causality and its direction; notably, the proposed model allows for increasing and decreasing variance effects. An empirical application evidences negative causality effects between returns and volume of an Italian stock market index future contract.

Suggested Citation

  • Massimiliano Caporin, 2007. "Variance (Non) Causality in Multivariate GARCH," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 1-24.
  • Handle: RePEc:taf:emetrv:v:26:y:2007:i:1:p:1-24
    DOI: 10.1080/07474930600972178
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930600972178
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haiqi & Zhong, Wanling & Park, Sung Y., 2016. "Generalized cross-spectral test for nonlinear Granger causality with applications to money–output and price–volume relations," Economic Modelling, Elsevier, vol. 52(PB), pages 661-671.
    2. PIERRET, Diane, 2013. "The systemic risk of energy markets," CORE Discussion Papers 2013018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. repec:eee:intfor:v:34:y:2018:i:1:p:45-63 is not listed on IDEAS
    4. Conrad, Christian & Karanasos, Menelaos, 2010. "Negative Volatility Spillovers In The Unrestricted Eccc-Garch Model," Econometric Theory, Cambridge University Press, vol. 26(03), pages 838-862, June.
    5. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.
    6. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:26:y:2007:i:1:p:1-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.