IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v145y2020ics0167947320300049.html

Optimal spatial aggregation of space–time models and applications

Author

Listed:
  • Gehman, Andrew
  • Wei, William W.S.

Abstract

Cancers are serious health concerns for every country. In the U.S. various cancer data are collected, monitored, and studied by the American Cancer Society (ACS). Since the data involves both spatial and temporal components, space–time models are useful for their analyses. Often these data (such as cancer rates) from varying geographical or political areas will be aggregated spatially to correspond to larger regions for analysis at that spatial scale. Methods to compare spatial aggregation schemes and to identify the optimal spatial aggregation are introduced. Specifically, some useful theorems and algorithms to determine the aggregation scheme that results in the minimum aggregate model error will be given, and they are demonstrated using the U.S. ovarian cancer incidence.

Suggested Citation

  • Gehman, Andrew & Wei, William W.S., 2020. "Optimal spatial aggregation of space–time models and applications," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:csdana:v:145:y:2020:i:c:s0167947320300049
    DOI: 10.1016/j.csda.2020.106913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300049
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.106913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Valter Di Giacinto, 2006. "A Generalized Space-Time ARMA Model with an Application to Regional Unemployment Analysis in Italy," International Regional Science Review, , vol. 29(2), pages 159-198, April.
    2. Svetlana Borovkova & Hendrik P. Lopuhaä & Budi Nurani Ruchjana, 2008. "Consistency and asymptotic normality of least squares estimators in generalized STAR models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(4), pages 482-508, November.
    3. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    4. Jon R. Miller, 1998. "original: Spatial aggregation and regional economic forecasting," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 32(2), pages 253-266.
    5. Huang, H.-C. & Martinez, F. & Mateu, J. & Montes, F., 2007. "Model comparison and selection for stationary space-time models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4577-4596, May.
    6. Tao Cheng & James Haworth & Jiaqiu Wang, 2012. "Spatio-temporal autocorrelation of road network data," Journal of Geographical Systems, Springer, vol. 14(4), pages 389-413, October.
    7. Nunung Nurhayati & Udjianna S. Pasaribu & Oki Neswan, 2012. "Application of Generalized Space-Time Autoregressive Model on GDP Data in West European Countries," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-16, May.
    8. Yongning Wang & Ruey S. Tsay & Johannes Ledolter & Keshab M. Shrestha, 2013. "Forecasting Simultaneously High‐Dimensional Time Series: A Robust Model‐Based Clustering Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 673-684, December.
    9. Juan C. Duque & Luc Anselin & Sergio J. Rey, 2012. "The Max-P-Regions Problem," Journal of Regional Science, Wiley Blackwell, vol. 52(3), pages 397-419, August.
    10. Ana Mónica C. Antunes & Tata Subba Rao, 2006. "On Hypotheses Testing for the Selection of Spatio‐Temporal Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(5), pages 767-791, September.
    11. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan H. L. Ip & Dmitry Demskoi & Azizur Rahman & Lihong Zheng, 2021. "Evaluation of COVID-19 Mitigation Policies in Australia Using Generalised Space-Time Autoregressive Intervention Models," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    2. Cabral, Joilson de Assis & Freitas Cabral, Maria Viviana de & Pereira Júnior, Amaro Olímpio, 2020. "Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil," Utilities Policy, Elsevier, vol. 66(C).
    3. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    4. Mei Sang & Jing Jiang & Xin Huang & Feifei Zhu & Qian Wang, 2024. "Spatial and temporal changes in population distribution and population projection at county level in China," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    5. Francesca Di Iorio & Umberto Triacca, 2022. "A comparison between VAR processes jointly modeling GDP and Unemployment rate in France and Germany," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 617-635, September.
    6. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    7. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    8. Umberto Triacca, 2016. "Measuring the Distance between Sets of ARMA Models," Econometrics, MDPI, vol. 4(3), pages 1-11, July.
    9. Robert Lehmann & Klaus Wohlrabe, 2014. "Regional economic forecasting: state-of-the-art methodology and future challenges," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
    10. Christopher T. Boyko & Rachel Cooper, 2013. "Density and Decision-Making: Findings from an Online Survey," Sustainability, MDPI, vol. 5(10), pages 1-21, October.
    11. Roy Cerqueti & Pierpaolo D’Urso & Livia Giovanni & Raffaele Mattera & Vincenzina Vitale, 2024. "Fuzzy clustering of time series based on weighted conditional higher moments," Computational Statistics, Springer, vol. 39(6), pages 3091-3114, September.
    12. John R. Birge & Ozan Candogan & Yiding Feng, 2022. "Controlling Epidemic Spread: Reducing Economic Losses with Targeted Closures," Management Science, INFORMS, vol. 68(5), pages 3175-3195, May.
    13. Qingliang Zhao & Junji Chen & Xiaobin Feng & Yiduo Wang, 2024. "A Novel Bézier LSTM Model: A Case Study in Corn Analysis," Mathematics, MDPI, vol. 12(15), pages 1-21, July.
    14. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    15. Joseph G. Hirschberg & Esfandiar Maasoumi & Daniel J. Slottje, 2001. "Clusters of attributes and well-being in the USA," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 445-460.
    16. Kong, Xiaolin & Ma, Chaoqun & Ren, Yi-Shuai & Narayan, Seema & Nguyen, Thong Trung & Baltas, Konstantinos, 2023. "Changes in the market structure and risk management of Bitcoin and its forked coins," Research in International Business and Finance, Elsevier, vol. 65(C).
    17. Dominguez, Alvaro, 2025. "A spatial analysis of air pollution in Japan before and after Fukushima," AGI Working Paper Series 2025-07, Asian Growth Research Institute.
    18. Sergio Destefanis & Valter Di Giacinto, 2022. "EU structural funds and GDP per capita: Spatial VAR evidence for the European regions," Discussion Paper series in Regional Science & Economic Geography 2022-09, Gran Sasso Science Institute, Social Sciences, revised Oct 2024.
    19. Juan Vilar & José Vilar & Sonia Pértega, 2009. "Classifying Time Series Data: A Nonparametric Approach," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 3-28, April.
    20. Reyna, Janet L. & Chester, Mikhail V. & Rey, Sergio J., 2016. "Defining geographical boundaries with social and technical variables to improve urban energy assessments," Energy, Elsevier, vol. 112(C), pages 742-754.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:145:y:2020:i:c:s0167947320300049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.