IDEAS home Printed from https://ideas.repec.org/p/wat/wpaper/1017.html
   My bibliography  Save this paper

On the Economics of Ramping Rate Restrictions at Hydro Power Plants: Balancing Profitability and Environmental Costs

Author

Listed:
  • Shilei Niu

    (Department of Economics, University of Waterloo)

  • Margaret Insley

    (Department of Economics, University of Waterloo)

Abstract

This paper examines the impact of ramping rate restrictions imposed on hydro operations to protect aquatic ecosystems. A dynamic optimization model of the profit maximizing decisions of a hydro operator is solved for various restrictions on water flow, using data for a representative hydro operation in Ontario. Profits are negatively affected, but for a range of restrictions the impact is not large. Ramping restrictions cause a redistribution of hydro production over a given day, which can result in an increase in total hydro power produced. This affects the need for power from other sources with consequent environmental impacts.

Suggested Citation

  • Shilei Niu & Margaret Insley, 2010. "On the Economics of Ramping Rate Restrictions at Hydro Power Plants: Balancing Profitability and Environmental Costs," Working Papers 1017, University of Waterloo, Department of Economics, revised Dec 2010.
  • Handle: RePEc:wat:wpaper:1017
    as

    Download full text from publisher

    File URL: http://economics.uwaterloo.ca/documents/10-017MI.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald N. Dewees, 2008. "Pollution and the Price of Power," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 81-100.
    2. Matthew J. Kotchen & Michael R. Moore & Frank Lupi & Edward S. Rutherford, 2006. "Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam Relicensing in Michigan," Land Economics, University of Wisconsin Press, vol. 82(3), pages 384-403.
    3. Philpott, A. B. & Craddock, M. & Waterer, H., 2000. "Hydro-electric unit commitment subject to uncertain demand," European Journal of Operational Research, Elsevier, vol. 125(2), pages 410-424, September.
    4. David A. Harpman, 1999. "Assessing the Short-Run Economic Cost of Environmental Constraints on Hydropower Operations at Glen Canyon Dam," Land Economics, University of Wisconsin Press, vol. 75(3), pages 390-401.
    5. Brian K. Edwards & Silvio J. Flaim & Richard E. Howitt, 1999. "Optimal Provision of Hydroelectric Power under Environmental and Regulatory Constraints," Land Economics, University of Wisconsin Press, vol. 75(2), pages 267-283.
    6. Brian K. Edwards, 2003. "The Economics of Hydroelectric Power," Books, Edward Elgar Publishing, number 2244.
    7. Daniel D. Huppert, 1999. "Snake River Salmon Recovery: Quantifying The Costs," Contemporary Economic Policy, Western Economic Association International, vol. 17(4), pages 476-491, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Yu & Benyou Jia & Shiqiang Wu & Xiufeng Wu & Peng Xu & Jiangyu Dai & Fangfang Wang & Liming Ma, 2019. "Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China," Sustainability, MDPI, vol. 11(21), pages 1-12, October.
    2. Pérez-Díaz, J.I. & Millán, R. & García, D. & Guisández, I. & Wilhelmi, J.R., 2012. "Contribution of re-regulation reservoirs considering pumping capability to environmentally friendly hydropower operation," Energy, Elsevier, vol. 48(1), pages 144-152.
    3. Kern, Jordan D. & Characklis, Gregory W., 2017. "Low natural gas prices and the financial cost of ramp rate restrictions at hydroelectric dams," Energy Economics, Elsevier, vol. 61(C), pages 340-350.
    4. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2016. "Approximate formulae for the assessment of the long-term economic impact of environmental constraints on hydropeaking," Energy, Elsevier, vol. 112(C), pages 629-641.
    5. Petras Punys & Antanas Dumbrauskas & Egidijus Kasiulis & Gitana Vyčienė & Linas Šilinis, 2015. "Flow Regime Changes: From Impounding a Temperate Lowland River to Small Hydropower Operations," Energies, MDPI, vol. 8(7), pages 1-24, July.
    6. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    7. Rayamajhee, Veeshan & Joshi, Aakrit, 2018. "Economic trade-offs between hydroelectricity production and environmental externalities: A case for local externality mitigation fund," Renewable Energy, Elsevier, vol. 129(PA), pages 237-244.
    8. Mohammad Nure Alam, 2021. "Accessing the Effect of Renewables on the Wholesale Power Market," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 341-360.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rayamajhee, Veeshan & Joshi, Aakrit, 2018. "Economic trade-offs between hydroelectricity production and environmental externalities: A case for local externality mitigation fund," Renewable Energy, Elsevier, vol. 129(PA), pages 237-244.
    2. Kern, Jordan D. & Characklis, Gregory W., 2017. "Low natural gas prices and the financial cost of ramp rate restrictions at hydroelectric dams," Energy Economics, Elsevier, vol. 61(C), pages 340-350.
    3. Lea Kosnik, 2010. "Balancing Environmental Protection and Energy Production in the Federal Hydropower Licensing Process," Land Economics, University of Wisconsin Press, vol. 86(3).
    4. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    5. Niu, Shilei & Insley, Margaret, 2016. "An options pricing approach to ramping rate restrictions at hydro power plants," Journal of Economic Dynamics and Control, Elsevier, vol. 63(C), pages 25-52.
    6. Pérez-Díaz, J.I. & Millán, R. & García, D. & Guisández, I. & Wilhelmi, J.R., 2012. "Contribution of re-regulation reservoirs considering pumping capability to environmentally friendly hydropower operation," Energy, Elsevier, vol. 48(1), pages 144-152.
    7. Pérez-Díaz, Juan I. & Wilhelmi, José R., 2010. "Assessment of the economic impact of environmental constraints on short-term hydropower plant operation," Energy Policy, Elsevier, vol. 38(12), pages 7960-7970, December.
    8. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2013. "Assessment of the economic impact of environmental constraints on annual hydropower plant operation," Energy Policy, Elsevier, vol. 61(C), pages 1332-1343.
    9. Bielsa, Jorge & Duarte, Rosa, 2003. "Modelling water resource allocation: a case study on agriculture versus hydropower production," MPRA Paper 36923, University Library of Munich, Germany.
    10. Guilfoos, Todd & Walsh, Jason, 2023. "A hedonic study of New England dam removals," Ecological Economics, Elsevier, vol. 203(C).
    11. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    12. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    13. Sheila M. Olmstead & Hilary Sigman, 2015. "Damming the Commons: An Empirical Analysis of International Cooperation and Conflict in Dam Location," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 497-526.
    14. Kongyang Nhiakao & Helmut Yabar & Takeshi Mizunoya, 2022. "Cost-Benefit Analysis of the Nam Che 1 Hydropower Plant, Thathom District, Laos: An Ex-Post Analysis," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    15. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    16. He, Xi, 2023. "Dams, cropland productivity, and economic development in China," China Economic Review, Elsevier, vol. 81(C).
    17. Auth, Trevor L. & Wackerman, Grace E. & Garcia, Marcelo H. & Stillwell, Ashlynn S., 2021. "Low-head hydropower as a reserve power source: A case study of Northeastern Illinois," Renewable Energy, Elsevier, vol. 175(C), pages 980-989.
    18. Crampes, Claude & Moreaux, Michel, 2008. "Pumping Water to Compete in Electricity Markets," IDEI Working Papers 507, Institut d'Économie Industrielle (IDEI), Toulouse.
    19. Matthew J. Kotchen & Laura E. Grant, 2011. "Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1172-1185, November.
    20. Kosnik, Lea, 2008. "Consolidation and ownership trends of nonfederal hydropower generating assets, 1980-2003," Energy Economics, Elsevier, vol. 30(3), pages 715-731, May.

    More about this item

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q59 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wat:wpaper:1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sherri Anne Arsenault (email available below). General contact details of provider: https://edirc.repec.org/data/dewatca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.