IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp980-989.html
   My bibliography  Save this article

Low-head hydropower as a reserve power source: A case study of Northeastern Illinois

Author

Listed:
  • Auth, Trevor L.
  • Wackerman, Grace E.
  • Garcia, Marcelo H.
  • Stillwell, Ashlynn S.

Abstract

Wind power generation faces intermittency challenges, typically requiring reserve power sources to maintain reliability of the electricity grid. This study proposes that hydropower turbines installed at low-head dams can provide reserve power generation to support wind power, avoiding the externalities associated with fossil-fuel plants and conventional hydropower. Low-head dams in the United States are used for flood control, securing municipal water supplies, and providing reservoir pools for recreation. As a case study, we estimated hydropower potential at 12 low-head dams along a 150-km reach of the Fox River (Northeastern Illinois, USA) using a calibrated river flow model. We analyzed the model's output to assess power generation capacity and reliability as a source of baseload power and as a component in a coupled wind-hydropower system. The modeled system performed reliably over a five-year time period despite significant long-term fluctuations in streamflow, offsetting the short-term variability of wind power. However, combining the low-head hydropower system with wind power limited the output of the system to the minimum generated by the low-head hydropower. The low-head hydropower system's small capacity and high break-even price suggest that it is better suited for local applications rather than grid-scale operations, especially if permitting regulations are considered.

Suggested Citation

  • Auth, Trevor L. & Wackerman, Grace E. & Garcia, Marcelo H. & Stillwell, Ashlynn S., 2021. "Low-head hydropower as a reserve power source: A case study of Northeastern Illinois," Renewable Energy, Elsevier, vol. 175(C), pages 980-989.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:980-989
    DOI: 10.1016/j.renene.2021.04.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jurasz, Jakub & Ciapała, Bartłomiej, 2017. "Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird," Applied Energy, Elsevier, vol. 198(C), pages 21-35.
    2. Matthew J. Kotchen & Michael R. Moore & Frank Lupi & Edward S. Rutherford, 2006. "Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam Relicensing in Michigan," Land Economics, University of Wisconsin Press, vol. 82(3), pages 384-403.
    3. Kaldellis, J. K. & Kavadias, K. A., 2001. "Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfilment," Applied Energy, Elsevier, vol. 70(4), pages 333-354, December.
    4. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    5. Benkovic, Sladjana & Makojevic, Nikola & Jednak, Sandra, 2013. "Possibilities for development of the Electric Power Industry of Serbia through private source financing of small hydropower plants," Renewable Energy, Elsevier, vol. 50(C), pages 1053-1059.
    6. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2013. "Performance of a low-head pico-hydro Turgo turbine," Applied Energy, Elsevier, vol. 102(C), pages 1114-1126.
    7. Alexander, K.V. & Giddens, E.P., 2008. "Optimum penstocks for low head microhydro schemes," Renewable Energy, Elsevier, vol. 33(3), pages 507-519.
    8. Saarinen, Linn & Dahlbäck, Niklas & Lundin, Urban, 2015. "Power system flexibility need induced by wind and solar power intermittency on time scales of 1–14 days," Renewable Energy, Elsevier, vol. 83(C), pages 339-344.
    9. Alidai, A. & Pothof, I.W.M., 2015. "Hydraulic performance of siphonic turbine in low head sites," Renewable Energy, Elsevier, vol. 75(C), pages 505-511.
    10. Alisha Fernandez & Seth Blumsack & Patrick Reed, 2012. "Evaluating wind-following and ecosystem services for hydroelectric dams in PJM," Journal of Regulatory Economics, Springer, vol. 41(1), pages 139-154, February.
    11. Stark, B.H. & Andò, E. & Hartley, G., 2011. "Modelling and performance of a small siphonic hydropower system," Renewable Energy, Elsevier, vol. 36(9), pages 2451-2464.
    12. Kougias, Ioannis & Szabó, Sándor & Monforti-Ferrario, Fabio & Huld, Thomas & Bódis, Katalin, 2016. "A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems," Renewable Energy, Elsevier, vol. 87(P2), pages 1023-1030.
    13. Khalid, M. & Savkin, A.V., 2014. "Minimization and control of battery energy storage for wind power smoothing: Aggregated, distributed and semi-distributed storage," Renewable Energy, Elsevier, vol. 64(C), pages 105-112.
    14. Aggidis, G.A. & Luchinskaya, E. & Rothschild, R. & Howard, D.C., 2010. "The costs of small-scale hydro power production: Impact on the development of existing potential," Renewable Energy, Elsevier, vol. 35(12), pages 2632-2638.
    15. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    16. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2014. "Low head pico hydro turbine selection using a multi-criteria analysis," Renewable Energy, Elsevier, vol. 61(C), pages 43-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Shen & Zhao, Daoli & Sun, Weipeng & Liu, Yuanyuan & Ma, Chenyuan, 2023. "Investigation on galloping piezoelectric energy harvester considering the surface roughness in low velocity water flow," Energy, Elsevier, vol. 262(PB).
    2. Zhu, Qianming & Qi, Yinke & Huang, Diangui, 2023. "Numerical simulation of performance of traveling wave pump-turbine at different wave speeds in pumping mode," Renewable Energy, Elsevier, vol. 203(C), pages 485-494.
    3. Nedaei, Mojtaba & Walsh, Philip R., 2022. "Technical performance evaluation and optimization of a run-of-river hydropower facility," Renewable Energy, Elsevier, vol. 182(C), pages 343-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    2. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    3. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    4. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    5. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    6. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    7. Alejandro Tapia Córdoba & Daniel Gutiérrez Reina & Pablo Millán Gata, 2019. "An Evolutionary Computational Approach for Designing Micro Hydro Power Plants," Energies, MDPI, vol. 12(5), pages 1-25, March.
    8. Židonis, Audrius & Benzon, David S. & Aggidis, George A., 2015. "Development of hydro impulse turbines and new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1624-1635.
    9. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    10. Zhang, Hongxuan & Lu, Zongxiang & Hu, Wei & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Coordinated optimal operation of hydro–wind–solar integrated systems," Applied Energy, Elsevier, vol. 242(C), pages 883-896.
    11. Benzon, D.S. & Aggidis, G.A. & Anagnostopoulos, J.S., 2016. "Development of the Turgo Impulse turbine: Past and present," Applied Energy, Elsevier, vol. 166(C), pages 1-18.
    12. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    13. Carapellucci, Roberto & Giordano, Lorena & Pierguidi, Fabio, 2015. "Techno-economic evaluation of small-hydro power plants: Modelling and characterisation of the Abruzzo region in Italy," Renewable Energy, Elsevier, vol. 75(C), pages 395-406.
    14. Powell, D. & Ebrahimi, A. & Nourbakhsh, S. & Meshkahaldini, M. & Bilton, A.M., 2018. "Design of pico-hydro turbine generator systems for self-powered electrochemical water disinfection devices," Renewable Energy, Elsevier, vol. 123(C), pages 590-602.
    15. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
    16. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    17. Schlott, Markus & Kies, Alexander & Brown, Tom & Schramm, Stefan & Greiner, Martin, 2018. "The impact of climate change on a cost-optimal highly renewable European electricity network," Applied Energy, Elsevier, vol. 230(C), pages 1645-1659.
    18. Ahmad, Shahryar Khalique & Hossain, Faisal, 2020. "Maximizing energy production from hydropower dams using short-term weather forecasts," Renewable Energy, Elsevier, vol. 146(C), pages 1560-1577.
    19. Ochoa, Danny & Martinez, Sergio, 2018. "Frequency dependent strategy for mitigating wind power fluctuations of a doubly-fed induction generator wind turbine based on virtual inertia control and blade pitch angle regulation," Renewable Energy, Elsevier, vol. 128(PA), pages 108-124.
    20. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:980-989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.