IDEAS home Printed from https://ideas.repec.org/p/vic/vicewp/0401.html
   My bibliography  Save this paper

An Empirical Likelihood Ratio Test for Normality

Author

Listed:

Abstract

The empirical likelihood ratio (ELR) test for the problem of testing for normality is derived in this paper. The sampling properties of the ELR test and four other commonly used tests are provided and analyzed using the Monte Carlo simulation technique. The power comparisons against a wide range of alternative distributions show that the ELR test is the most powerful of these tests in certain situations.

Suggested Citation

  • Lauren Bin Dong & David E. A. Giles, 2004. "An Empirical Likelihood Ratio Test for Normality," Econometrics Working Papers 0401, Department of Economics, University of Victoria.
  • Handle: RePEc:vic:vicewp:0401
    Note: ISSN 1485-6441
    as

    Download full text from publisher

    File URL: https://www.uvic.ca/socialsciences/economics/_assets/docs/econometrics/ewp0401.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. repec:cup:cbooks:9780521623940 is not listed on IDEAS
    3. Bera, Anil K. & Bilias, Yannis, 2002. "The MM, ME, ML, EL, EF and GMM approaches to estimation: a synthesis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 51-86, March.
    4. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    5. Mittelhammer, Ronald C. & Judge, George G. & Schoenberg, Ron, 2003. "Empirical Evidence Concerning the Finite Sample Performance of EL-Type Structural Equation Estimation and Inference Methods," CUDARE Working Papers 25090, University of California, Berkeley, Department of Agricultural and Resource Economics.
    6. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    7. J. P. Royston, 1982. "An Extension of Shapiro and Wilk's W Test for Normality to Large Samples," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 115-124, June.
    8. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    9. Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiwoong Kim, 2020. "Implementation of a goodness-of-fit test through Khmaladze martingale transformation," Computational Statistics, Springer, vol. 35(4), pages 1993-2017, December.
    2. Lauren Bin Dong & David E. A. Giles, 2004. "An Empirical Likelihood Ratio Test for Normality in Linear Regression," Econometrics Working Papers 0402, Department of Economics, University of Victoria.
    3. Lauren Bin Dong, 2004. "The Behrens-Fisher Problem: An Empirical Likelihood Ratio Approach," Econometrics Working Papers 0404, Department of Economics, University of Victoria.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    2. Patrik Guggenberger, 2006. "Finite-Sample Evidence Suggesting a Heavy Tail Problem of the Generalized Empirical Likelihood Estimator, accepted for publication, Econometric Reviews," UCLA Economics Online Papers 371, UCLA Department of Economics.
    3. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, vol. 138(2), pages 461-487, June.
    4. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    5. Umut Oguzoglu & Thanasis Stengos, 2011. "Can Dynamic Panel Data Explain the Finance-Growth Link? An Empirical Likelihood Approach," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 3(2), pages 129-148, October.
    6. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    7. Manuel Denzer & Constantin Weiser, 2021. "Beyond F-statistic - A General Approach for Assessing Weak Identification," Working Papers 2107, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Marian Grendar & George Judge, 2008. "Large-Deviations Theory and Empirical Estimator Choice," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 513-525.
    9. Lauren Bin Dong, 2004. "The Behrens-Fisher Problem: An Empirical Likelihood Ratio Approach," Econometrics Working Papers 0404, Department of Economics, University of Victoria.
    10. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    11. Richard Smith, 2005. "Local GEL methods for conditional moment restrictions," CeMMAP working papers CWP15/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    13. Minguez, Ana & Javier Sese, F., 2022. "Why do you want a relationship, anyway? Consent to receive marketing communications and donors’ willingness to engage with nonprofits," Journal of Business Research, Elsevier, vol. 148(C), pages 356-367.
    14. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    15. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    16. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
    17. Ioannis Tsamourgelis & Persa Paflioti & Thomas Vitsounis, 2013. "Seaports Activity (A)synchronicity, Trade Intensity and Business Cycle Convergence: A Panel Data Analysis," International Journal of Maritime, Trade & Economic Issues (IJMTEI), International Journal of Maritime, Trade & Economic Issues (IJMTEI), vol. 0(1), pages 67-92.
    18. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    19. Shane M. Sherlund, 2004. "Quasi Empirical Likelihood Estimation of Moment Condition Models," Econometric Society 2004 North American Summer Meetings 507, Econometric Society.
    20. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.

    More about this item

    Keywords

    Empirical likelihood; Monte Carlo simulation; testing for normality; size and power;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vic:vicewp:0401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kali Moon (email available below). General contact details of provider: https://edirc.repec.org/data/devicca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.