IDEAS home Printed from https://ideas.repec.org/p/ags/ucbecw/25084.html
   My bibliography  Save this paper

Large Deviations Theory and Empirical Estimator Choice

Author

Listed:
  • Grendar, Marian
  • Judge, George G.

Abstract

Criterion choice is such a hard problem in information recovery and in estimation and inference. In the case of inverse problems with noise, can probabilistic laws provide a basis for empirical estimator choice? That is the problem we investigate in this paper. Large Deviations Theory is used to evaluate the choice of estimator in the case of two fundamental situations-problems in modelling data. The probabilistic laws developed demonstrate that each problem has a unique solution-empirical estimator. Whether other members of the empirical estimator family can be associated a particular problem and conditional limit theorem, is an open question.

Suggested Citation

  • Grendar, Marian & Judge, George G., 2006. "Large Deviations Theory and Empirical Estimator Choice," CUDARE Working Papers 25084, University of California, Berkeley, Department of Agricultural and Resource Economics.
  • Handle: RePEc:ags:ucbecw:25084
    DOI: 10.22004/ag.econ.25084
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/25084/files/wp061012.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.25084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    3. Kitamura, Yuichi & Stutzer, Michael, 2002. "Connections between entropic and linear projections in asset pricing estimation," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 159-174, March.
    4. Judge, George G. & Mittelhammer, Ron C, 2003. "A Semi-Parametric Basis for Combining Estimation Problems Under Quadratic Loss," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8z25j0w3, Department of Agricultural & Resource Economics, UC Berkeley.
    5. Judge G.G. & Mittelhammer R.C., 2004. "A Semiparametric Basis for Combining Estimation Problems Under Quadratic Loss," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 479-487, January.
    6. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    7. Marian Grendar Jr & Marian Grendar, 2003. "Maximum Probability/Entropy translating of contiguous categorical observations into frequencies," Econometrics 0309003, University Library of Munich, Germany.
    8. Yuichi Kitamura, 2001. "Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions," Econometrica, Econometric Society, vol. 69(6), pages 1661-1672, November.
    9. Francesco Bravo, "undated". "Bartlett-type Adjustments for Empirical Discrepancy Test Statistics," Discussion Papers 04/14, Department of Economics, University of York.
    10. Mittelhammer, Ron C & Judge, George G. & Schoenberg, Ron, 2003. "Empirical Evidence Concerning the Finite Sample Performance of EL-Type Structural Equation Estimation and Inference Methods," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2xm0n02g, Department of Agricultural & Resource Economics, UC Berkeley.
    11. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    2. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    3. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
    4. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    5. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    6. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    7. Richard Smith, 2005. "Local GEL methods for conditional moment restrictions," CeMMAP working papers CWP15/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    9. Shane M. Sherlund, 2004. "Quasi Empirical Likelihood Estimation of Moment Condition Models," Econometric Society 2004 North American Summer Meetings 507, Econometric Society.
    10. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    11. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    12. Caner, Mehmet, 2008. "Nearly-singular design in GMM and generalized empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 144(2), pages 511-523, June.
    13. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    14. Canay, Ivan A. & Otsu, Taisuke, 2012. "Hodges–Lehmann optimality for testing moment conditions," Journal of Econometrics, Elsevier, vol. 171(1), pages 45-53.
    15. Hongtu Zhu & Haibo Zhou & Jiahua Chen & Yimei Li & Jeffrey Lieberman & Martin Styner, 2009. "Adjusted Exponentially Tilted Likelihood with Applications to Brain Morphology," Biometrics, The International Biometric Society, vol. 65(3), pages 919-927, September.
    16. Umut Oguzoglu & Thanasis Stengos, 2011. "Can Dynamic Panel Data Explain the Finance-Growth Link? An Empirical Likelihood Approach," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 3(2), pages 129-148, October.
    17. Richard Smith, 2005. "Weak instruments and empirical likelihood: a discussion of the papers by DWK Andrews and JH Stock and Y Kitamura," CeMMAP working papers CWP13/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. A. Felipe & N. Martín & P. Miranda & L. Pardo, 2018. "Testing with Exponentially Tilted Empirical Likelihood," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1319-1358, December.
    19. Alain Guay & Florian Pelgrin, 2007. "Using Implied Probabilities to Improve Estimation with Unconditional Moment Restrictions," Cahiers de recherche 0747, CIRPEE.
    20. Almeida, Caio & Garcia, René, 2012. "Assessing misspecified asset pricing models with empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 519-537.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ucbecw:25084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.