IDEAS home Printed from https://ideas.repec.org/p/van/wpaper/0204.html
   My bibliography  Save this paper

Repeated Games with Asynchronous Moves

Author

Listed:
  • Quan Wen

    () (Department of Economics, Vanderbilt University)

Abstract

This paper studies a class of dynamic games, called repeated games with asynchronous moves, where not all players may revise their actions in every period. With state-dependent backwards induction, we introduce the concept of effective minimax in repeated games with asynchronous moves. A player's effective minimax value crucially depends on the asynchronous move structure in the repeated game, but not on the player's minimax or effective minimax value in the stage game. Any player's equilibrium payoffs are bounded below by his effective minimax value. We establish a folk theorem: when players are sufficiently patient, any feasible payoff vector where every player receives more than his effective minimax value can be approximated by a perfect equilibrium in the repeated game with asynchronous moves. This folk theorem integrates Fudenberg and Maskin's (1986) folk theorem for standard repeated games, Lagunoff and Matsui's (1997) anti-folk theorem for repeated pure coordination game with asynchronous moves, and Wen's (2002) folk theorem for repeated sequential games.

Suggested Citation

  • Quan Wen, 2002. "Repeated Games with Asynchronous Moves," Vanderbilt University Department of Economics Working Papers 0204, Vanderbilt University Department of Economics.
  • Handle: RePEc:van:wpaper:0204
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/VUECON/vu02-w04.pdf
    File Function: First version, 2002
    Download Restriction: no

    References listed on IDEAS

    as
    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    3. Roger Lagunoff & Akihiko Matsui, 1997. "Asynchronous Choice in Repeated Coordination Games," Econometrica, Econometric Society, vol. 65(6), pages 1467-1478, November.
    4. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, January.
    5. Yoon, Kiho, 2001. "A Folk Theorem for Asynchronously Repeated Games," Econometrica, Econometric Society, vol. 69(1), pages 191-200, January.
    6. Sorin Sylvain, 1995. "A Note on Repeated Extensive Games," Games and Economic Behavior, Elsevier, vol. 9(1), pages 116-123, April.
    7. Quan Wen, 2002. "A Folk Theorem for Repeated Sequential Games," Review of Economic Studies, Oxford University Press, vol. 69(2), pages 493-512.
    8. Shaked, Avner & Sutton, John, 1984. "Involuntary Unemployment as a Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 52(6), pages 1351-1364, November.
    9. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-554, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libich, Jan & StehlĂ­k, Petr, 2010. "Incorporating rigidity and commitment in the timing structure of macroeconomic games," Economic Modelling, Elsevier, vol. 27(3), pages 767-781, May.
    2. Jan Libich & Petr Stehlik, 2008. "Fiscal Rigidity In A Monetary Union: The Calvo Timing And Beyond," CAMA Working Papers 2008-22, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    More about this item

    Keywords

    Folk Theorem; repeated games; asynchronous moves; effective minimax;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:van:wpaper:0204. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (John P. Conley). General contact details of provider: http://www.vanderbilt.edu/econ/wparchive/index.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.