IDEAS home Printed from
   My bibliography  Save this paper

Additive Plausibility Characterizes the Supports of Consistent Assessments



We introduce three definitions. First, we let a "basement" be a set of nodes and actions that supports at least one assessment. Second, we derive from an arbitrary basement its implied "plausibility" (i.e. infinite-relative-likelihood) relation among the game's nodes. Third, we say that this plausibility relation is "additive" if it has a completion represented by the nodal sums of a mass function defined over the game's actions. This last construction is built upon Streufert (2012)'s result that nodes can be specified as sets of actions. Our central result is that a basement has additive plausibility if and only if it supports at least one consistent assessment. The result's proof parallels the early foundations of probability theory and requires only Farkas' Lemma. The result leads to related characterizations, to an easily tested necessary condition for consistency, and to the repair of a nontrivial gap in a proof of Kreps and Wilson (1982).

Suggested Citation

  • Peter A. Streufert, 2012. "Additive Plausibility Characterizes the Supports of Consistent Assessments," UWO Department of Economics Working Papers 20123, University of Western Ontario, Department of Economics.
  • Handle: RePEc:uwo:uwowop:20123

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Halpern, Joseph Y., 2010. "Lexicographic probability, conditional probability, and nonstandard probability," Games and Economic Behavior, Elsevier, vol. 68(1), pages 155-179, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Giacomo Bonanno, 2016. "AGM-consistency and perfect Bayesian equilibrium. Part II: from PBE to sequential equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1071-1094, November.

    More about this item


    plausibility relation; additive representation; plausibility mass function; infinite relative likelihood;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwo:uwowop:20123. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.