IDEAS home Printed from https://ideas.repec.org/p/usi/wpaper/451.html
   My bibliography  Save this paper

Nonparametric estimation in models with Lévy type jumps and stochastic volatility

Author

Listed:
  • Cecilia Mancini

  • Roberto Renò

Abstract

We introduce a nonparametric estimator of the volatility function in univariate processes with Lévy type jumps and stochastic volatility when we observe the state variable at discrete times. Our results rely on the fact that it is possible to recognize the discontinuous part of the state variable from those squared increments between observations exceeding a suitable threshold. We discuss the implementation of the estimator with high-frequency data

Suggested Citation

  • Cecilia Mancini & Roberto Renò, 2005. "Nonparametric estimation in models with Lévy type jumps and stochastic volatility," Department of Economics University of Siena 451, Department of Economics, University of Siena.
  • Handle: RePEc:usi:wpaper:451
    as

    Download full text from publisher

    File URL: http://repec.deps.unisi.it/quaderni/451.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 2004. "Disentangling diffusion from jumps," Journal of Financial Economics, Elsevier, vol. 74(3), pages 487-528, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    2. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    3. Ehrmann, Michael & Jansen, David-Jan, 2022. "Stock return comovement when investors are distracted: More, and more homogeneous," Journal of International Money and Finance, Elsevier, vol. 129(C).
    4. Alexander, Carol & Rauch, Johannes, 2021. "A general property for time aggregation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 536-548.
    5. Rangel, José Gonzalo, 2011. "Macroeconomic news, announcements, and stock market jump intensity dynamics," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1263-1276, May.
    6. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    7. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.
    8. Fajardo, Jose Santiago, 2006. "Equivalent Martingale Measures and Lévy Processes," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 60(4), February.
    9. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    10. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    11. Michal Czerwonko & Stylianos Perrakis, 2016. "Portfolio Selection with Transaction Costs and Jump-Diffusion Asset Dynamics II: Economic Implications," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-28, December.
    12. Branger, Nicole & Kraft, Holger & Meinerding, Christoph, 2014. "Partial information about contagion risk, self-exciting processes and portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 18-36.
    13. William A. Brock & Steven N. Durlauf, 2010. "Adoption Curves and Social Interactions," Journal of the European Economic Association, MIT Press, vol. 8(1), pages 232-251, March.
    14. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    15. Boudt, Kris & Petitjean, Mikael, 2014. "Intraday liquidity dynamics and news releases around price jumps: Evidence from the DJIA stocks," Journal of Financial Markets, Elsevier, vol. 17(C), pages 121-149.
    16. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    17. Jean-Thomas Bernard & Lynda Khalaf & Maral Kichian & Sebastien Mcmahon, 2008. "Forecasting commodity prices: GARCH, jumps, and mean reversion," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 279-291.
    18. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    19. Fukuda, Kosei, 2009. "Distribution switching in financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1711-1720.
    20. José Fajardo & Ernesto Mordecki, 2006. "Skewness Premium with Lévy Processes," IBMEC RJ Economics Discussion Papers 2006-04, Economics Research Group, IBMEC Business School - Rio de Janeiro.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usi:wpaper:451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabrizio Becatti (email available below). General contact details of provider: https://edirc.repec.org/data/desieit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.