IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Solution and Estimation of Dynamic Discrete Choice Structural Models Using Euler Equations

Listed author(s):
  • Victor Aguirregabiria
  • Arvind Magesan

This paper extends the Euler Equation (EE) representation of dynamic decision problems to a general class of discrete choice models and shows that the advantages of this approach apply not only to the estimation of structural parameters but also to the computation of a solution and to the evaluation of counterfactual experiments. We use a choice probabilities representation of the discrete decision problem to derive marginal conditions of optimality with the same features as the standard EEs in continuous decision problems. These EEs imply a fixed point mapping in the space of conditional choice values, that we denote the Euler equation-value (EE-value) operator. We show that, in contrast to Euler equation operators in continuous decision models, this operator is a contraction. We present numerical examples that illustrate how solving the model by iterating in the EE-value mapping implies substantial computational savings relative to iterating in the Bellman equation (that requires a much larger number of iterations) or in the policy function (that involves a costly valuation step). We define a sample version of the EE-value operator and use it to construct a sequence of consistent estimators of the structural parameters, and to evaluate counterfactual experiments. The computational cost of evaluating this sample-based EE-value operator increases linearly with sample size, and provides an unbiased (in finite samples) and consistent estimator the counterfactual. As such there is no curse of dimensionality in the consistent estimation of the model and in the evaluation of counterfactual experiments. We illustrate the computational gains of our methods using several Monte Carlo experiments.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.economics.utoronto.ca/public/workingPapers/tecipa-562.pdf
File Function: Main Text
Download Restriction: no

Paper provided by University of Toronto, Department of Economics in its series Working Papers with number tecipa-562.

as
in new window

Length: Unknown pages
Date of creation: 24 May 2016
Handle: RePEc:tor:tecipa:tecipa-562
Contact details of provider: Postal:
150 St. George Street, Toronto, Ontario

Phone: (416) 978-5283

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
  2. V. Joseph Hotz & Robert A. Miller & Seth Sanders & Jeffrey Smith, 1994. "A Simulation Estimator for Dynamic Models of Discrete Choice," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 265-289.
  3. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 497-529.
  4. Russell Cooper & John C. Haltiwanger & Jonathan L. Willis, 2010. "Euler-Equation Estimation for Discrete Choice Models: A Capital Accumulation Application," NBER Working Papers 15675, National Bureau of Economic Research, Inc.
  5. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
  6. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn, 2012. "A Practical Asymptotic Variance Estimator for Two-Step Semiparametric Estimators," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 481-498, May.
  7. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
  8. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
  9. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
  10. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics,in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729 Elsevier.
  11. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
  12. Coleman, Wilbur John, II, 1991. "Equilibrium in a Production Economy with an Income Tax," Econometrica, Econometric Society, vol. 59(4), pages 1091-1104, July.
  13. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
  14. Coleman, Wilbur John, II, 1990. "Solving the Stochastic Growth Model by Policy-Function Iteration," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 27-29, January.
  15. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-562. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePEc Maintainer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.