IDEAS home Printed from https://ideas.repec.org/p/tkk/dpaper/dp68.html
   My bibliography  Save this paper

On the Existence of Markov Perfect Equilibria in Perfect Information Games

Author

Listed:
  • Hannu Salonen

    () (Department of Economics and PCRC, University of Turku, 20014 Turku, Finland)

  • Hannu Vartiainen

    (HECER, P.O. Box 17 (Arkadiankatu 7), FI-00014 University of Helsinki)

Abstract

We study the existence of pure strategy Markov perfect equilibria in two-person perfect information games. There is a state space X and each period player's possible actions are a subset of X. This set of feasible actions depends on the current state, which is determined by the choice of the other player in the previous period. We assume that X is a compact Hausdorff space and that the action correspondence has an acyclic and asymmetric graph. For some states there may be no feasible actions and then the game ends. Payoffs are either discounted sums of utilities of the states visited, or the utility of the state where the game ends. We give sufficient conditions for the existence of equilibrium e.g. in case when either feasible action sets are finite or when players' payoffs are continuously dependent on each other. The latter class of games includes zero-sum games and pure coordination games.

Suggested Citation

  • Hannu Salonen & Hannu Vartiainen, 2011. "On the Existence of Markov Perfect Equilibria in Perfect Information Games," Discussion Papers 68, Aboa Centre for Economics.
  • Handle: RePEc:tkk:dpaper:dp68
    as

    Download full text from publisher

    File URL: http://www.ace-economics.fi/kuvat/dp68.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Roger Lagunoff & Akihiko Matsui, 1997. "Asynchronous Choice in Repeated Coordination Games," Econometrica, Econometric Society, vol. 65(6), pages 1467-1478, November.
    2. Kuipers, J. & Flesch, J. & Schoenmakers, G. & Vrieze, K., 2009. "Pure subgame-perfect equilibria in free transition games," European Journal of Operational Research, Elsevier, vol. 199(2), pages 442-447, December.
    3. V. Bhaskar & George J. Mailathy & Stephen Morris, 2009. "A Foundation for Markov Equilibria in Infinite Horizon Perfect Information Games," Levine's Working Paper Archive 814577000000000178, David K. Levine.
    4. Salonen, Hannu & Vartiainen, Hannu, 2010. "On the existence of undominated elements of acyclic relations," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 217-221, November.
    5. Livshits, Igor, 2002. "On non-existence of pure strategy Markov perfect equilibrium," Economics Letters, Elsevier, vol. 76(3), pages 393-396, August.
    6. Harris, Christopher J, 1985. "Existence and Characterization of Perfect Equilibrium in Games of Perfect Information," Econometrica, Econometric Society, vol. 53(3), pages 613-628, May.
    7. Doraszelski, Ulrich & Escobar, Juan, 2010. "A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification," Theoretical Economics, Econometric Society, vol. 5(3), September.
    8. Borgers, Tilman, 1989. "Perfect equilibrium histories of finite and infinite horizon games," Journal of Economic Theory, Elsevier, vol. 47(1), pages 218-227, February.
    9. Carmona, Guilherme, 2003. "On Games of Perfect Information: Equilibria, E-Equilibria and Approximation by Simple Games," FEUNL Working Paper Series wp427, Universidade Nova de Lisboa, Faculdade de Economia.
    10. Gale, Douglas, 1995. "Dynamic Coordination Games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 1-18, January.
    11. Hellwig, Martin & Leininger, Wolfgang & Reny, Philip J. & Robson, Arthur J., 1990. "Subgame perfect equilibrium in continuous games of perfect information: An elementary approach to existence and approximation by discrete games," Journal of Economic Theory, Elsevier, vol. 52(2), pages 406-422, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    dynamic games; Markov perfect equilibrium;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Aleksandra Maslowska). General contact details of provider: http://edirc.repec.org/data/tukkkfi.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.