IDEAS home Printed from https://ideas.repec.org/p/tkk/dpaper/dp68.html
   My bibliography  Save this paper

On the Existence of Markov Perfect Equilibria in Perfect Information Games

Author

Listed:
  • Hannu Salonen

    (Department of Economics and PCRC, University of Turku, 20014 Turku, Finland)

  • Hannu Vartiainen

    (HECER, P.O. Box 17 (Arkadiankatu 7), FI-00014 University of Helsinki)

Abstract

We study the existence of pure strategy Markov perfect equilibria in two-person perfect information games. There is a state space X and each period player's possible actions are a subset of X. This set of feasible actions depends on the current state, which is determined by the choice of the other player in the previous period. We assume that X is a compact Hausdorff space and that the action correspondence has an acyclic and asymmetric graph. For some states there may be no feasible actions and then the game ends. Payoffs are either discounted sums of utilities of the states visited, or the utility of the state where the game ends. We give sufficient conditions for the existence of equilibrium e.g. in case when either feasible action sets are finite or when players' payoffs are continuously dependent on each other. The latter class of games includes zero-sum games and pure coordination games.

Suggested Citation

  • Hannu Salonen & Hannu Vartiainen, 2011. "On the Existence of Markov Perfect Equilibria in Perfect Information Games," Discussion Papers 68, Aboa Centre for Economics.
  • Handle: RePEc:tkk:dpaper:dp68
    as

    Download full text from publisher

    File URL: http://www.ace-economics.fi/kuvat/dp68.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guilherme Carmona, 2005. "On Games Of Perfect Information: Equilibria, Ε–Equilibria And Approximation By Simple Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 491-499.
    2. Solan, Eilon & Vieille, Nicolas, 2003. "Deterministic multi-player Dynkin games," Journal of Mathematical Economics, Elsevier, vol. 39(8), pages 911-929, November.
    3. , & ,, 2010. "A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification," Theoretical Economics, Econometric Society, vol. 5(3), September.
    4. Roger Lagunoff & Akihiko Matsui, 1997. "Asynchronous Choice in Repeated Coordination Games," Econometrica, Econometric Society, vol. 65(6), pages 1467-1478, November.
    5. Kuipers, J. & Flesch, J. & Schoenmakers, G. & Vrieze, K., 2009. "Pure subgame-perfect equilibria in free transition games," European Journal of Operational Research, Elsevier, vol. 199(2), pages 442-447, December.
    6. V. Bhaskar & George J. Mailathy & Stephen Morris, 2009. "A Foundation for Markov Equilibria in Infinite Horizon Perfect Information Games," Levine's Working Paper Archive 814577000000000178, David K. Levine.
    7. Salonen, Hannu & Vartiainen, Hannu, 2010. "On the existence of undominated elements of acyclic relations," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 217-221, November.
    8. Borgers, Tilman, 1989. "Perfect equilibrium histories of finite and infinite horizon games," Journal of Economic Theory, Elsevier, vol. 47(1), pages 218-227, February.
    9. Gale, Douglas, 1995. "Dynamic Coordination Games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 1-18, January.
    10. Livshits, Igor, 2002. "On non-existence of pure strategy Markov perfect equilibrium," Economics Letters, Elsevier, vol. 76(3), pages 393-396, August.
    11. Hellwig, Martin & Leininger, Wolfgang & Reny, Philip J. & Robson, Arthur J., 1990. "Subgame perfect equilibrium in continuous games of perfect information: An elementary approach to existence and approximation by discrete games," Journal of Economic Theory, Elsevier, vol. 52(2), pages 406-422, December.
    12. Harris, Christopher J, 1985. "Existence and Characterization of Perfect Equilibrium in Games of Perfect Information," Econometrica, Econometric Society, vol. 53(3), pages 613-628, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Bhaskar & George J. Mailathy & Stephen Morris, 2009. "A Foundation for Markov Equilibria in Infinite Horizon Perfect Information Games," Levine's Working Paper Archive 814577000000000178, David K. Levine.
    2. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2024. "Asymptotic behavior of subgame perfect Nash equilibria in Stackelberg games," Annals of Operations Research, Springer, vol. 336(3), pages 1573-1590, May.
    3. Doraszelski, Ulrich & Escobar, Juan F., 2019. "Protocol invariance and the timing of decisions in dynamic games," Theoretical Economics, Econometric Society, vol. 14(2), May.
    4. Duggan, John, 2017. "Existence of stationary bargaining equilibria," Games and Economic Behavior, Elsevier, vol. 102(C), pages 111-126.
    5. Guilherme Carmona, 2005. "On Games Of Perfect Information: Equilibria, Ε–Equilibria And Approximation By Simple Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 491-499.
    6. Takahashi, Satoru, 2005. "Infinite horizon common interest games with perfect information," Games and Economic Behavior, Elsevier, vol. 53(2), pages 231-247, November.
    7. János Flesch & Arkadi Predtetchinski, 2017. "A Characterization of Subgame-Perfect Equilibrium Plays in Borel Games of Perfect Information," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1162-1179, November.
    8. He, Wei & Sun, Yeneng, 2020. "Dynamic games with (almost) perfect information," Theoretical Economics, Econometric Society, vol. 15(2), May.
    9. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2016. "Equilibrium existence for large perfect information games," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 5-18.
    10. Guilherme Carmona, 2004. "On Games of Perfect Information: Equilibria, epsilon-Equilibria and Approximation by Simple Games," Game Theory and Information 0402002, University Library of Munich, Germany.
    11. Guilherme Carmona, 2006. "Two simple proofs of a theorem by Harris," Nova SBE Working Paper Series wp486, Universidade Nova de Lisboa, Nova School of Business and Economics.
    12. J. Kuipers & J. Flesch & G. Schoenmakers & K. Vrieze, 2016. "Subgame-perfection in recursive perfect information games, where each player controls one state," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 205-237, March.
    13. Wei He & Yeneng Sun, 2015. "Dynamic Games with Almost Perfect Information," Papers 1503.08900, arXiv.org.
    14. Lipman, Barton L. & Wang, Ruqu, 2000. "Switching Costs in Frequently Repeated Games," Journal of Economic Theory, Elsevier, vol. 93(2), pages 149-190, August.
    15. Kutay Cingiz & János Flesch & P. Jean-Jacques Herings & Arkadi Predtetchinski, 2020. "Perfect information games where each player acts only once," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(4), pages 965-985, June.
    16. János Flesch & Arkadi Predtetchinski, 2016. "Subgame-Perfect ϵ-Equilibria in Perfect Information Games with Common Preferences at the Limit," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1208-1221, November.
    17. Carlos Alós-Ferrer & Klaus Ritzberger, 2017. "Characterizing existence of equilibrium for large extensive form games: a necessity result," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(2), pages 407-430, February.
    18. P. Jean-Jacques Herings & Harold Houba, 2022. "Costless delay in negotiations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(1), pages 69-93, July.
    19. Aviad Heifetz & Enrico Minelli & Herakles Polemarchakis, 2021. "Liberal parentalism," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 23(6), pages 1107-1129, December.
    20. He, Wei & Sun, Yeneng, 2015. "Dynamic Games with Almost Perfect Information," MPRA Paper 63345, University Library of Munich, Germany.

    More about this item

    Keywords

    dynamic games; Markov perfect equilibrium;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susmita Baulia (email available below). General contact details of provider: https://edirc.repec.org/data/tukkkfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.