IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2022-35.html
   My bibliography  Save this paper

The empirics of technology, employment and occupations: lessons learned and challenges ahead

Author

Listed:
  • Fabio Montobbio
  • Jacopo Staccioli
  • Maria Enrica Virgillito
  • Marco Vivarelli

Abstract

What have we learned, from the most recent years of debate and analysis, of the future of work being threatened by technology? This paper presents a critical review of the empirical literature and outlines both lessons learned and challenges ahead. Far from being fully exhaustive, the review intends to highlight common findings and main differences across economic studies. According to our reading of the literature, a few challenges-and also the common factors affecting heterogeneous outcomes across studies-still stand, including (i) the variable used as a proxy for technology, (ii) the level of aggregation of the analyses, (iii) the deep heterogeneity of different types of technologies and their adopted mix, (iv) the structural differences across adopters, and (v) the actual combination of the organisational practices in place at the establishment level in affecting net job creation/destruction and work reorganisation.

Suggested Citation

  • Fabio Montobbio & Jacopo Staccioli & Maria Enrica Virgillito & Marco Vivarelli, 2022. "The empirics of technology, employment and occupations: lessons learned and challenges ahead," LEM Papers Series 2022/35, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2022/35
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2022-35.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jose Miguel Benavente & Rodolfo Lauterbach, 2008. "Technological innovation and employment: complements or substitutes?," The European Journal of Development Research, Taylor and Francis Journals, vol. 20(2), pages 318-329.
    2. Sotiris Blanas & Gino Gancia & Sang Yoon (Tim) Lee, 2019. "Who is afraid of machines?," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 34(100), pages 627-690.
    3. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    4. Gabriele Pellegrino & Mariacristina Piva & Marco Vivarelli, 2019. "Beyond R&D: the role of embodied technological change in affecting employment," Journal of Evolutionary Economics, Springer, vol. 29(4), pages 1151-1171, September.
    5. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    6. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    7. Harrison, Rupert & Jaumandreu, Jordi & Mairesse, Jacques & Peters, Bettina, 2014. "Does innovation stimulate employment? A firm-level analysis using comparable micro-data from four European countries," International Journal of Industrial Organization, Elsevier, vol. 35(C), pages 29-43.
    8. Gustavo Crespi & Ezequiel Tacsir & Mariano Pereira, 2019. "Effects of innovation on employment in Latin America," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(1), pages 139-159.
    9. Eli Berman & John Bound & Zvi Griliches, 1994. "Changes in the Demand for Skilled Labor within U. S. Manufacturing: Evidence from the Annual Survey of Manufactures," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(2), pages 367-397.
    10. Marco Vivarelli, 2015. "Innovation and employment," IZA World of Labor, Institute of Labor Economics (IZA), pages 154-154, May.
    11. Balliester, Thereza. & Elsheikhi, Adam., 2018. "The future of work a literature review," ILO Working Papers 994987493402676, International Labour Organization.
    12. Ajay Agrawal & Joshua S. Gans & Avi Goldfarb, 2019. "Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 31-50, Spring.
    13. Balsmeier, Benjamin & Woerter, Martin, 2019. "Is this time different? How digitalization influences job creation and destruction," Research Policy, Elsevier, vol. 48(8), pages 1-1.
    14. Rajeev K. Goel & Michael A. Nelson, 2022. "Employment effects of R&D and process innovation: evidence from small and medium-sized firms in emerging markets," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(1), pages 97-123, March.
    15. Erik Brynjolfsson & Tom Mitchell & Daniel Rock, 2018. "What Can Machines Learn, and What Does It Mean for Occupations and the Economy?," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 43-47, May.
    16. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    17. Martin Krzywdzinski, 2021. "Automation, digitalization, and changes in occupational structures in the automobile industry in Germany, Japan, and the United States: a brief history from the early 1990s until 2018 [Managing fle," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(3), pages 499-535.
    18. Flavio Calvino & Maria Enrica Virgillito, 2018. "The Innovation†Employment Nexus: A Critical Survey Of Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 32(1), pages 83-117, February.
    19. Mariacristina Piva & Marco Vivarelli, 2004. "The determinants of the skill bias in Italy: R&D, organisation or globalisation?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 13(4), pages 329-347.
    20. David Autor, 2022. "The Labor Market Impacts of Technological Change: From Unbridled Enthusiasm to Qualified Optimism to Vast Uncertainty," NBER Working Papers 30074, National Bureau of Economic Research, Inc.
    21. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338.
    22. Adrian Adermon & Magnus Gustavsson, 2015. "Job Polarization and Task-Biased Technological Change: Evidence from Sweden, 1975–2005," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(3), pages 878-917, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montobbio, F. & Staccioli, J. & Virgillito, M.E. & Vivarelli, Marco, 2022. "The empirics of technology, employment and occupations," MERIT Working Papers 2022-037, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    2. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    3. Kerstin Hotte & Melline Somers & Angelos Theodorakopoulos, 2022. "Technology and jobs: A systematic literature review," Papers 2204.01296, arXiv.org.
    4. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    5. Başak Dalgıç & Burcu Fazlıoğlu & Aytekin Güven, 2023. "Innovation, employment and market structure: firm level evidence from Turkey," Empirical Economics, Springer, vol. 65(3), pages 1385-1407, September.
    6. Dosi, G. & Piva, M. & Virgillito, M.E. & Vivarelli, M., 2021. "Embodied and disembodied technological change: The sectoral patterns of job-creation and job-destruction," Research Policy, Elsevier, vol. 50(4).
    7. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    8. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    9. Gravina, Antonio Francesco & Foster-McGregor, Neil, 2020. "Automation, globalisation and relative wages: An empirical analysis of winners and losers," MERIT Working Papers 2020-040, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Rajeev K. Goel & Michael A. Nelson, 2022. "Employment effects of R&D and process innovation: evidence from small and medium-sized firms in emerging markets," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(1), pages 97-123, March.
    11. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the digital divide: Workers' exposure to digitalization and its consequences for individual employment," Discussion Papers 118, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    12. Parteka, Aleksandra & Wolszczak-Derlacz, Joanna & Nikulin, Dagmara, 2024. "How digital technology affects working conditions in globally fragmented production chains: Evidence from Europe," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    13. Laura Barbieri & Mariacristina Piva & Marco Vivarelli, 2016. "The Employment Impact of Different Forms of Innovation: Evidence from Italian Community Innovation Survey," DISCE - Quaderni del Dipartimento di Scienze Economiche e Sociali dises1620, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    14. Laura Barbieri & Mariacristina Piva & Marco Vivarelli, 2019. "R&D, embodied technological change, and employment: evidence from Italian microdata," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(1), pages 203-218.
    15. Anderton, Robert & Jarvis, Valerie & Labhard, Vincent & Morgan, Julian & Petroulakis, Filippos & Vivian, Lara, 2020. "Virtually everywhere? Digitalisation and the euro area and EU economies," Occasional Paper Series 244, European Central Bank.
    16. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    17. Yang, Chih-Hai, 2022. "How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan," Research Policy, Elsevier, vol. 51(6).
    18. Porath, Daniel & Nabachwa, Sarah & Agasha, Ester & Kijjambu, Nsambu Frederick, 2021. "Innovation and employment in Sub-Saharan Africa," UASM Discussion Paper Series 10/2021, University of Applied Sciences Mainz.
    19. Mauro Caselli & Andrea Fracasso & Arianna Marcolin & Sergio Scicchitano, 2023. "The reassuring effect of firms' technological innovations on workers' job insecurity," International Journal of Manpower, Emerald Group Publishing Limited, vol. 45(4), pages 754-778, October.
    20. Gries, Thomas & Naudé, Wim, 2022. "Modelling artificial intelligence in economics," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 56, pages 1-12.

    More about this item

    Keywords

    Technology; Employment; Skills; Occupations; Tasks; Future of Work.;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2022/35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.