IDEAS home Printed from https://ideas.repec.org/p/sce/scecf9/111.html
   My bibliography  Save this paper

Nonparametric Estimation of Multifactor Continuous Time Interest-Rate Models

Author

Listed:
  • Christopher T. Downing

    () (Board of Governors, Federal Reserve)

Abstract

In this paper we study the finite sample properties of the nonparametric method developed by Stanton and later extended by Boudoukh, et al. for the estimation of the drifts and diffusions of multifactor continuous-time term-structure models. Monte Carlo simulations from a known parametric model are employed to calculate the performance of the estimator. The paper focuses on the issue of optimal bandwidth selection. The results suggest that, for persistent data-generating processes exhibiting stochastic volatility, such as interest rate data, a bandwidth function that varies over the surface of the data is optimal. The paper also presents a computationally intensive bandwidth-selection procedure that uses dynamic graphics, combining the computational power of the machine with the pattern-recognition abilities of the human brain. The Monte Carlo simulations require the numeric solution of a system of stochastic differential equations. The paper also presents a nonparametric test for the validity of the solutions. This test is useful in other estimation algorithms, such as the efficient method of moments, where numeric solutions of stochastic differential equations are required. The test is also useful as a tool for understanding how the length of the time step used in the numeric solution of the stochastic differential solutions affects the accuracy of the solution.

Suggested Citation

  • Christopher T. Downing, 1999. "Nonparametric Estimation of Multifactor Continuous Time Interest-Rate Models," Computing in Economics and Finance 1999 111, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:111
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef99/papers/NONP.PDF
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
    2. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    3. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    4. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    5. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    6. Pritsker, Matt, 1998. "Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 449-487.
    7. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    8. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    2. Ang, Andrew & Bekaert, Geert, 2002. "Short rate nonlinearities and regime switches," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1243-1274, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:111. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.