IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/28091.html
   My bibliography  Save this paper

Continuous time modeling of interest rates: An empirical study on the Turkish short rate

Author

Listed:
  • Bayraci, Selcuk
  • UNAL, GAZANFER

Abstract

We proposed a continuous time ARMA known as CARMA(p,q) model for modeling the interest rate dynamics. CARMA(p,q) models have an advantage over their discrete time counterparts that they allow using Ito formulas and provide closed-form solutions for bond and bond option prices. We demonstrate the capabilities of CARMA(p,q) models by using Turkish short rate. The Turkish Republic Central Bank’s benchmark bond prices are used to calculate short-term interest rates between the period of 15.07.2006 and 15.07.2008. ARMA(1,1) model and CARMA(1,0) model are chosen as best suitable models in modeling the Turkish short rate.

Suggested Citation

  • Bayraci, Selcuk & UNAL, GAZANFER, 2010. "Continuous time modeling of interest rates: An empirical study on the Turkish short rate," MPRA Paper 28091, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:28091
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/28091/1/MPRA_paper_28091.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Yacine Aït-Sahalia, 2001. "Transition Densities For Interest Rate And Other Nonlinear Diffusions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 1, pages 1-34, World Scientific Publishing Co. Pte. Ltd..
    3. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    4. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    5. David A. Chapman & Neil D. Pearson, 1998. "Is the Short Rate Drift Actually Nonlinear?," Finance 9808005, University Library of Munich, Germany.
    6. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    7. Yongmiao Hong & Haitao Li & Feng Zhao, 2004. "Out-of-Sample Performance of Discrete-Time Spot Interest Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 457-473, October.
    8. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    9. Pritsker, Matt, 1998. "Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 449-487.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    2. Gil-Bazo Javier & Rubio Gonzalo, 2004. "A Nonparametric Dimension Test of the Term Structure," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-28, September.
    3. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    4. Jun Yu & Peter C.B. Phillips, 2001. "Gaussian Estimation of Continuous Time Models of the Short Term Interest Rate," Cowles Foundation Discussion Papers 1309, Cowles Foundation for Research in Economics, Yale University.
    5. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    6. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    7. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Roberto Reno' & Antonio Roma & Stephen Schaefer, 2004. "A Comparison of Alternative Nonparametric Estimators of the Short Rate Diffusion Coefficient," Department of Economics University of Siena 445, Department of Economics, University of Siena.
    9. repec:wyi:journl:002108 is not listed on IDEAS
    10. repec:wyi:journl:002109 is not listed on IDEAS
    11. repec:wyi:journl:002118 is not listed on IDEAS
    12. Bali, Turan G. & Wu, Liuren, 2006. "A comprehensive analysis of the short-term interest-rate dynamics," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1269-1290, April.
    13. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    14. Al-Zoubi, Haitham A., 2009. "Short-term spot rate models with nonparametric deterministic drift," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 731-747, August.
    15. Monica Gentile & Roberto Renò, 2002. "Which Model for the Italian Interest Rates?," LEM Papers Series 2002/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Paulo M. M. Rodrigues & Antonio Rubia, 2004. "On the Small Sample Properties of Dickey Fuller and Maximum Likelihood Unit Root Tests on Discrete-Sampled Short-Term Interest Rates," Econometrics 0405004, University Library of Munich, Germany.
    17. Dennis Kristensen, 2004. "A Semiparametric Single-Factor Model of the Term Structure," FMG Discussion Papers dp501, Financial Markets Group.
    18. Sun, Licheng, 2005. "Regime shifts in interest rate volatility," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 418-434, June.
    19. Ang, Andrew & Bekaert, Geert, 2002. "Short rate nonlinearities and regime switches," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1243-1274, July.
    20. Li, Minqiang, 2010. "A damped diffusion framework for financial modeling and closed-form maximum likelihood estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 132-157, February.
    21. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    22. Roberto Reno', 2004. "Nonparametric Estimation of the Diffusion Coefficient via Fourier Analysis, with Aplication to Short Rate Modeling," Department of Economics University of Siena 440, Department of Economics, University of Siena.

    More about this item

    Keywords

    Interest rate modeling; Continuous-time ARMA (CARMA)process; Lévy process;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:28091. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.